Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Khim=0 thì (1) trở thành \(x^2-2=0\)
hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)
Khi m=1 thì (1) trở thành \(x^2-2x=0\)
=>x=0 hoặc x=2
b: \(\text{Δ}=\left(-2m\right)^2-4\left(2m-2\right)\)
\(=4m^2-8m+8=4\left(m-1\right)^2>=0\)
Do đó: Phương trình luôn có hai nghiệm
a: Khi m=-3 thì (1) trở thành \(x^2-2\cdot\left(-2\right)x-\left(-3\right)-3=0\)
=>x2+4x=0
=>x(x+4)=0
=>x=0 hoặc x=-4
b: \(\text{Δ}=\left(2m-2\right)^2-4\left(-m-3\right)\)
\(=4m^2-8m+4+4m+12\)
\(=4m^2-4m+16\)
\(=\left(2m-1\right)^2+15>0\)
Do đó: Phương trình luôn có hai nghiệm phân biệt
Ta có: \(x_1^2+x_2^2=10\)
nên \(\left(x_1+x_2\right)^2-2x_1x_2=10\)
\(\Leftrightarrow\left(2m-2\right)^2-2\left(-m-3\right)=0\)
\(\Leftrightarrow4m^2-8m+4+2m+6=0\)
\(\Leftrightarrow4m^2-6m+10=0\)
\(\text{Δ}_1=\left(-6\right)^2-4\cdot4\cdot10=36-160< 0\)
Do đó: Phương trình vô nghiệm
a: Δ=(2m+2)^2-4(m-6)
=4m^2+8m+4-4m+24
=4m^2+4m+28
=(2m+1)^2+27>0
=>Phương trình luôn có hai nghiệm phân biệt
c: Để (1) có ít nhất 1 nghiệm dương thì
m-6<0 hoặc (2m+2>0 và m-6>0)
=>m>6 hoặc m<6
b: Để phương trình có hai nghiệm trái dấu thì (m+2)(m-4)<0
=>-2<m<4
Ta có: \(x^2-2\left(m+1\right)x+m-4=0\)
Phương trình có hai nghiệm phân biệt khi △'>0\(\Leftrightarrow\left(m+1\right)^2-m+4>0\Leftrightarrow m^2+m+5>0\)(luôn đúng)
Theo Vi-ét \(x_1+x_2=2\left(m+1\right);x_1x_2=m-4\)
\(A=x_1+x_2-2x_1x_2+2021=2\left(m+1\right)-2\left(m-4\right)+2021=2031\) không phụ thuộc vào m
Câu a của bài này rất vô lý vì lớp 9 chưa học cách xác định nghiệm của BPT bậc 2.
\(\Delta=\left(m-2\right)^2-4\left(2m-3\right)=m^2-12m+16\)
a.
Phương trình có 2 nghiệm pb khi:
\(m^2-12m+16>0\Rightarrow\left[{}\begin{matrix}m>6+2\sqrt{5}\\m< 6-2\sqrt{5}\end{matrix}\right.\)
b.
Khi pt có 2 nghiệm, theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m-2\\x_1x_2=2m-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x_1+x_2\right)=2m-4\\x_1x_2=2m-3\end{matrix}\right.\)
Trừ vế cho vế:
\(2\left(x_1+x_2\right)-x_1x_2=-1\)
Đây là biểu thức liên hệ 2 nghiệm ko phụ thuộc m