1) Cho phương trình sau: x² + mx + 2m – 4 = 0 (1) với m là tham...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2020

a) Tam thức bậc hai có \(\Delta'=m^2-m+4=m^2-2.\frac{1}{2}m+\frac{1}{4}-\frac{1}{4}+4=\left(m-\frac{1}{2}\right)^2+\frac{15}{4}>0\).

Suy ra phương trình (1) luôn có nghiệm với mọi m.

b) Theo Vi-et ta có:

\(x_1+x_2=2m,x_1.x_2=m-4\)

Điều kiển để \(x_1+x_2=\frac{x_1^2}{x_2}+\frac{x_2^2}{x_1}\)

   \(\Leftrightarrow x_1+x_2=\frac{x_1^3+x_2^3}{x_1x_2}\)

    \(\Leftrightarrow x_1+x_2=\frac{\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)}{x_1x_2}\)

   \(\Leftrightarrow2m=\frac{\left(2m\right)^3-3\left(m-4\right).2m}{m-4}\)

  \(\Leftrightarrow2m\left(m-4\right)=8m^3-6m^2+8m\) và \(m\ne4\)

  \(\Leftrightarrow4m\left(2m^2-2m+3\right)=0\) và \(m\ne4\)

  \(\Leftrightarrow m=0\)

21 tháng 6 2019

Chị gì gì ơi những bài toán khó như vậy chị nên đăng trên H.VN 

Ở đó học sinh lớp 9,10,8,7 sẽ giúp cho 

21 tháng 6 2019

Ta có \(\Delta'=\left(m-1\right)^2-2m+5\ge0\)

=> \(m^2-4m+6\ge0\)luôn đúng

Theo vi-et ta có \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=2m-5\end{cases}}\)

Khi đó 

\(P=\left(\frac{x_1}{x_2}+\frac{x_2}{x_1}\right)^2-2\)

   \(=\left(\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}\right)^2-2\)

   \(=\left(\frac{4\left(m-1\right)^2}{2m-5}-2\right)^2-2\)

     \(=\left(\frac{4m^2-10m+2m-5+9}{2m-5}-2\right)^2-2\)

   \(=\left(2m+1+\frac{9}{2m-5}-2\right)^2-2\)

    \(=\left(2m-1+\frac{9}{2m-5}\right)^2-2\)

Để P là số nguyên

=> \(\frac{9}{2m-5}\)là số nguyên

=> \(2m-5\in\left\{\pm1;\pm3;\pm9\right\}\)

=> \(m\in\left\{-2;1;2;3;4;7\right\}\)

Kết hợp với ĐK 

=> \(m\in\left\{1;2;3;4;7\right\}\)

Vậy \(m\in\left\{1;2;3;4;7\right\}\)

18 tháng 3 2018

đen ta = (2m-1)^2 - 4(m^2-1) = 4m^2 - 4m + 1 - 4m^2 + 4 = 5-4m >= 0 => m =< 5/4

p = (x1)^2 + (x2)^2 = (x1+x2)^2 - 2x1x2 = (2m-1)^2 - 2.(m^2-1) = 4m^2 - 4m + 1 - 2m^2 + 2 = 2m^2 - 4m + 2 + 1 = 2(m-1)^2 + 1 >= 1

dấu "=" xảy ra khi m = 1 (thõa mãn =< 5/4)

mậy minP = 1 khi m = 1

25 tháng 3 2022

Xét pt đã cho có \(\Delta=m^2-4.1.\left(-m-1\right)=m^2+4m+4=\left(m+2\right)^2\ge0\)với mọi \(m\inℝ\)

Vậy pt đã cho luôn có 2 nghiệm với mọi \(m\inℝ\)

Theo định lí Vi-ét, ta có \(\hept{\begin{cases}x_1+x_2=-\frac{-m}{1}=m\\x_1x_2=\frac{-m-1}{1}=-m-1\end{cases}}\)

Lại có \(\left|x_1-x_2\right|\ge3\)\(\Leftrightarrow\left(x_1-x_2\right)^2\ge9\)(vì cả 2 vế của BĐT đầu đều lớn hơn 0)

 \(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2\ge9\)\(\Leftrightarrow m^2-4\left(-m-1\right)\ge9\)\(\Leftrightarrow m^2+4m+4\ge9\)\(\Leftrightarrow\left(m+2\right)^2\ge9\)\(\Leftrightarrow\orbr{\begin{cases}m+2\ge3\\m+2\le-3\end{cases}}\Leftrightarrow\orbr{\begin{cases}m\ge1\\m\le-5\end{cases}}\)

Vậy các giá trị của m để pt có 2 nghiệm x1, x2 thỏa mãn \(\left|x_1-x_2\right|\ge3\)là \(\orbr{\begin{cases}m\ge1\\m\le-5\end{cases}}\)

2 tháng 5 2016

dễ lắm bạn mình cm pt đã cho luôn có hai nghiệm pb với mọi m sau đó áp dụng viet tính tích và tổng hai nghiệm  rồi quy đồng hệ thức đứa về dạng tích tổng rồi thay vô là dc

6 tháng 7 2017

Để PT có 2 nghiệm phân biệt thì

\(\Delta'=\left(m-2\right)^2-\left(m^2-2m+4\right)>0\)

\(\Leftrightarrow m< 0\)

Theo vi et ta có:

\(\hept{\begin{cases}x_1+x_2=-2m+4\\x_1.x_2=m^2-2m+4\end{cases}}\)

Theo đề bài thì

\(\frac{2}{x_1^2+x_2^2}-\frac{1}{x_1.x_2}=\frac{15}{m}\)

\(\Leftrightarrow\frac{2}{\left(x_1+x_2\right)^2-2x_1.x_2}-\frac{1}{x_1.x_2}=\frac{15}{m}\)

\(\Leftrightarrow\frac{2}{\left(-2m+4\right)^2-2\left(m^2-2m+4\right)}-\frac{1}{m^2-2m+4}=\frac{15}{m}\)

\(\Leftrightarrow\frac{1}{m^2-6m+4}-\frac{1}{m^2-2m+4}=\frac{15}{m}\)

\(\Leftrightarrow15m^4-120m^3+296m^2-480m+240=0\)

Với m < 0  thì VP > 0 

Vậy không tồn tại m để thỏa bài toán.