\(^2\) - 5x - m + 2 = 0.
a) m=? để phương trình có hai n...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2018

mọi người giúp e với ạ !!

AH
Akai Haruma
Giáo viên
23 tháng 3 2018

Bài 1:

Ta viết lại phương trình: \(3x^2+5x+(m-2)=0\)

Để pt có hai nghiệm (không nhất thiết phân biệt) thì:

\(\Delta=25-12(m-2)\geq 0\)

\(\Leftrightarrow m\leq \frac{49}{12}\)

Khi đó, áp dụng định lý Viete của pt bậc 2: \(\left\{\begin{matrix} x_1+x_2=-\frac{5}{3}\\ x_1x_2=\frac{m-2}{3}\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} \frac{1}{3}x_2+x_2=\frac{-5}{3}\\ \frac{1}{3}x_2^2=\frac{m-2}{3}\end{matrix}\right.\) (thay \(x_1=\frac{1}{3}x_2\) )

\(\Leftrightarrow \left\{\begin{matrix} x_2=\frac{-5}{4}\\ \frac{1}{3}x_2^2=\frac{m-2}{3}\end{matrix}\right.\) \(\Rightarrow \frac{m-2}{3}=\frac{1}{3}\left(\frac{-5}{4}\right)^2=\frac{25}{48}\)

\(\Leftrightarrow m=\frac{57}{16}\) (thỏa mãn)

Vậy \(m=\frac{57}{16}\)

NV
14 tháng 5 2020

\(\Delta=9-4m\ge0\Rightarrow m\le\frac{9}{4}\)

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1x_2=m\end{matrix}\right.\)

a/ \(\left\{{}\begin{matrix}x_1-x_2=6\\x_1+x_2=-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=\frac{3}{2}\\x_2=-\frac{9}{2}\end{matrix}\right.\)

\(x_1x_2=m\Rightarrow m=\frac{3}{2}.\left(-\frac{9}{2}\right)=-\frac{27}{4}\)

b/ \(\left\{{}\begin{matrix}3x_1+2x_2=20\\x_1+x_2=-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=26\\x_2=-29\end{matrix}\right.\)

\(\Rightarrow m=x_1x_2=-29.26=-754\)

c/ \(\left\{{}\begin{matrix}\left(x_1-x_2\right)\left(x_1+x_2\right)=34\\x_1+x_2=-3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1-x_2=-\frac{34}{3}\\x_1+x_2=-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=-\frac{43}{6}\\x_2=\frac{25}{6}\end{matrix}\right.\) \(\Rightarrow m=-\frac{1075}{36}\)

d/ \(\left\{{}\begin{matrix}x_1=2x_2\\x_1+x_2=-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_2=-1\\x_1=-2\end{matrix}\right.\) \(\Rightarrow m=2\)

e/ Giống câu c, bạn tự giải

TH1: m=1

Pt sẽ là -3x+2=0

hay x=2/3(loại)

TH2: m<>1

\(\text{Δ}=\left(-3\right)^2-4\left(m-1\right)\cdot2=9-8\left(m-1\right)=-8m+17\)

Để phương trình có hai nghiệm thì -8m+17>=0

hay m<=17/8

Ta có: \(\dfrac{1}{x_1}+\dfrac{1}{x_2}=3\)

\(\Leftrightarrow\dfrac{x_1+x_2}{x_1x_2}=3\)

\(\Leftrightarrow\dfrac{3}{m-1}=3\cdot\dfrac{2}{m-1}=\dfrac{6}{m-1}\)(vô lý)

NV
16 tháng 5 2020

\(\Delta'=\left(m-1\right)^2-m+3=m^2-3m+4=\left(m-\frac{3}{2}\right)^2+\frac{7}{4}>0;\forall m\)

\(\Rightarrow\) Phương trình luôn có 2 nghiệm pb với mọi m

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=m-3\end{matrix}\right.\)

\(A=2\left(x_1^2+x_2^2\right)-5x_1x_2=2\left(x_1+x_2\right)^2-9x_1x_2\)

\(=8\left(m-1\right)^2-9\left(m-3\right)\)

\(=8m^2-25m+35=8\left(m-\frac{25}{16}\right)^2+\frac{495}{32}\ge\frac{495}{32}\)

Dấu "=" xảy ra khi \(m=\frac{16}{25}\)

\(A=27\Leftrightarrow8m^2-25m+35=27\)

\(\Leftrightarrow8m^2-25m+8=0\Rightarrow m=\frac{25\pm3\sqrt{41}}{16}\)

Để pt có nghiệm này bằng nghiệm kia \(\Leftrightarrow\) pt có nghiệm kép

\(\Leftrightarrow\Delta'=m^2-3m+4=0\Rightarrow\) ko tồn tại m thỏa mãn

NV
16 tháng 5 2020

\(\Delta'=m^2-2m+1=\left(m-1\right)^2\ge0;\forall m\)

\(\Rightarrow\) Phương trình đã cho luôn có nghiệm với mọi m

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=2m-1\end{matrix}\right.\)

\(A=2\left(x_1+x_2\right)^2-9x_1x_2\)

\(=8m^2-9\left(2m-1\right)=8m^2-18m+9\)

\(=8\left(m-\frac{9}{8}\right)^2-\frac{9}{8}\ge-\frac{9}{8}\)

\(A_{min}=-\frac{9}{8}\) khi \(m=\frac{9}{8}\)

\(A=27\Leftrightarrow8m^2-18m+9=27\)

\(\Leftrightarrow8m^2-18m-18=0\Rightarrow\left[{}\begin{matrix}m=3\\m=-\frac{3}{4}\end{matrix}\right.\)

Để pt có nghiệm này bằng nghiệm kia \(\Leftrightarrow\Delta'=0\)

\(\Rightarrow\left(m-1\right)^2=0\Rightarrow m=1\)

NV
15 tháng 5 2020

\(\Delta=25-12m\ge0\Rightarrow m\le\frac{25}{12}\)

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=\frac{5}{3}\\x_1x_2=\frac{m}{3}\end{matrix}\right.\)

Ta có: \(\left\{{}\begin{matrix}x_1+x_2=\frac{5}{3}\\x_1^2-x_2^2=\frac{5}{9}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=\frac{5}{3}\\\left(x_1-x_2\right)\left(x_1+x_2\right)=\frac{5}{9}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=\frac{5}{3}\\x_1-x_2=\frac{1}{3}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=1\\x_2=\frac{2}{3}\end{matrix}\right.\)

\(x_1x_2=\frac{m}{3}\Rightarrow\frac{m}{3}=\frac{2}{3}\Rightarrow m=2\)

2/ \(\left|a+c\right|< b\Rightarrow\left\{{}\begin{matrix}b>0\\b^2>\left(a+c\right)^2\ge4ac\end{matrix}\right.\)

\(\Rightarrow b^2>4ac\Rightarrow b^2-4ac>0\)

\(\Rightarrow\Delta>0\Rightarrow\) phương trình luôn luôn có nghiệm