Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, Ta có : y = mx - 2m - 1
<=> m ( x - 2 ) - 1 - y = 0
<=> m(x - 2) - (y+1) = 0
Dấu ''='' xảy ra khi x = 2 ; y = -1
Vậy (d) luôn đi qua A(2;-1)
2, (d) : y = mx - 2m - 1
Cho x = 0 => y = -2m - 1
=> d cắt Oy tại A(0;-2m-1)
=> OA = \(\left|-2m-1\right|\)
Cho y = 0 => x = \(\dfrac{2m+1}{m}\)
=> d cắt trục Ox tại B(2m+1/m;0)
=> OB = \(\left|\dfrac{2m+1}{m}\right|\)
Ta có : \(S_{OAB}=\dfrac{1}{2}\left|\dfrac{2m+1}{m}.\left(-2m-1\right)\right|=2\)
\(\Leftrightarrow\left|-\dfrac{\left(2m+1\right)^2}{m}\right|=4\Leftrightarrow\left[{}\begin{matrix}-\dfrac{\left(2m+1\right)^2}{m}=4\\-\dfrac{\left(2m+1\right)^2}{m}=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4m^2+8m+1=0\\4m^2+1=0\left(voli\right)\end{matrix}\right.\)
<=> m = \(\dfrac{-2\pm\sqrt{3}}{2}\)
a, Gọi điểm cố định mà \(\left(d\right)\) luôn đi qua là \(\left(x_0;y_0\right)\)
\(\Rightarrow y_0=mx_0+m-1,\forall m\)
\(\Leftrightarrow m\left(x_0+1\right)-y_0-1=0,\forall m\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_0+1=0\\-y_0-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=-1\\y_0=-1\end{matrix}\right.\Rightarrow\left(-1;-1\right)\)
Vậy \(\left(d\right)\) luôn đi qua \(\left(-1;-1\right)\) với mọi giá trị của m
b, Gọi A, B lần lượt là giao điểm của \(\left(d\right)\) với trục tung và trục hoành
TH1: \(m=0\Rightarrow y=m-1\) là hàm hằng \(\Rightarrow\) loại
TH2: \(m\ne0\)
\(x=0\Rightarrow y=m-1\Rightarrow OA=\left|m-1\right|\)
\(y=0\Rightarrow x=\frac{1-m}{m}\Rightarrow OB=\left|\frac{1-m}{m}\right|\)
\(S_{\Delta OAB}=\frac{1}{2}OA.OB=\frac{1}{2}\left|m-1\right|\left|\frac{1-m}{m}\right|=\frac{\left(m-1\right)^2}{2\left|m\right|}=2\)
\(\Rightarrow m^2-2m+1=4\left|m\right|\)
Nếu \(m>0\Rightarrow m^2-6m+1=0\Leftrightarrow\left[{}\begin{matrix}m=3+2\sqrt{2}\\m=3-2\sqrt{2}\end{matrix}\right.\)
Nếu \(m< 0\Rightarrow m^2+2m+1=0\Leftrightarrow\left(m+1\right)^2=0\Leftrightarrow m=-1\)
Vậy ...
2: Tọa độ điểm A là:
\(\left\{{}\begin{matrix}y_A=0\\mx=2m+1\end{matrix}\right.\Leftrightarrow A\left(\dfrac{2m+1}{m};0\right)\)
Tọa độ điểm B là:
\(\left\{{}\begin{matrix}x=0\\y=-2m-1\end{matrix}\right.\Leftrightarrow B\left(-2m-1;0\right)\)
Theo đề, ta có: \(\left|\dfrac{4m^2+4m+1}{m}\right|=4\)
\(\Leftrightarrow\left[{}\begin{matrix}4m^2+4m+1=4m\\4m^2+4m+1=-4m\end{matrix}\right.\Leftrightarrow4m^2+8m+1=0\)
\(\Leftrightarrow4m^2+8m+4m-3=0\)
\(\Leftrightarrow\left(2m+2\right)^2=3\)
hay \(m\in\left\{\dfrac{\sqrt{3}-2}{2};\dfrac{-\sqrt{3}-2}{2}\right\}\)
Bài 1:
Đặt: (d): y = (m+5)x + 2m - 10
Để y là hàm số bậc nhất thì: m + 5 # 0 <=> m # -5
Để y là hàm số đồng biến thì: m + 5 > 0 <=> m > -5
(d) đi qua A(2,3) nên ta có:
3 = (m+5).2 + 2m - 10
<=> 2m + 10 + 2m - 10 = 3
<=> 4m = 3
<=> m = 3/4
(d) cắt trục tung tại điểm có tung độ bằng 9 nên ta có:
9 = (m+5).0 + 2m - 10
<=> 2m - 10 = 9
<=> 2m = 19
<=> m = 19/2
(d) đi qua điểm 10 trên trục hoành nên ta có:
0 = (m+5).10 + 2m - 10
<=> 10m + 50 + 2m - 10 = 0
<=> 12m = -40
<=> m = -10/3
(d) // y = 2x - 1 nên ta có:
\(\hept{\begin{cases}m+5=2\\2m-10\ne-1\end{cases}}\) <=> \(\hept{\begin{cases}m=-3\\m\ne\frac{9}{2}\end{cases}}\) <=> \(m=-3\)
a) ta có : \(y=mx+m-1\Leftrightarrow mx+m-1-y=0\)
\(\Leftrightarrow m\left(x+1\right)+\left(-y-1\right)\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\-y-1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-1\end{matrix}\right.\)
\(\Rightarrow\) \(d\) luôn đi qua một điểm cố định \(A\left(-1;-1\right)\) với mọi \(m\) (đpcm)
b) ta có : giao điểm của \(d\) với \(Ox\) là \(B\left(\dfrac{1-m}{m};0\right)\)
giao điểm của \(d\) với \(Oy\) là \(C\left(0;m-1\right)\)
để \(d\) tạo với các trục tọa độ một tam giác có điện tích bằng không khi và chỉ khi \(\left|Ox\right|.\left|Oy\right|=2\) \(\Leftrightarrow xy=2\)
\(\Rightarrow\left(\dfrac{1-m}{m}\right)\left(m-1\right)=2\Leftrightarrow-\left(m-1\right)^2=2m\)
\(\Leftrightarrow-m^2-1=0\Leftrightarrow m\in\varnothing\)
vậy không tồn tại giá trị của \(m\)
Sửa đề: \(y=mx+m-1\)