\(\frac{\left(x+\frac{1}{x}\right)^6-\left(x^6+\frac{1}{x^6}\right)-2}{\left(x+\frac{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1:1,Tìm m sao cho phương trình ẩn x :(m-1).x+3m-2=0 có nghiệm duy nhất thỏa man x> bằng 12,Giải phương trình x2+\(\frac{9x^2}{\left(x+3\right)^2}\)=40Bài 2::Cho hình vuông ABCD có 2 đường chéo cắt nhau tại O .Một đường thẳng kẻ qua A cắt cạnh BC tại M và cắt đường thẳng CD tại MN.Gọi K là giao của OM và DN .Chứng minh CK vuông góc BNBài 3: hình vuông ABCD và 13 đường thẳng bất kì có cùng tính chất là...
Đọc tiếp

Bài 1:

1,Tìm m sao cho phương trình ẩn x :(m-1).x+3m-2=0 có nghiệm duy nhất thỏa man x> bằng 1

2,Giải phương trình x2+\(\frac{9x^2}{\left(x+3\right)^2}\)=40

Bài 2::Cho hình vuông ABCD có 2 đường chéo cắt nhau tại O .Một đường thẳng kẻ qua A cắt cạnh BC tại M và cắt đường thẳng CD tại MN.Gọi K là giao của OM và DN .Chứng minh CK vuông góc BN

Bài 3: hình vuông ABCD và 13 đường thẳng bất kì có cùng tính chất là mỗi đường thẳng chia hình vuông thành 2 tứ giác có tỉ số diện tích là \(\frac{2}{5}\).Chứng minh rằng có 4 đường thẳng trong 13 đoạn thẳng đó cùng đi qua 1 điểm

Bài 4:Cho hình bình hành ABCD (AC>BD),hình chiếu vuông góc của C lên AB,AD lần lượt là E và F

Chúng minh:

1,CE.CD=CB.CF và △ABC đồng dạng △FCE

2,AB.AE+AD.AF=AC2

Bài 5:

1,Tìm các số nguyên x,y thảo mãn x2+8y2+4xy-2x-4y=4

2,Cho đa thức h(x) bậc 4 ,hệ số của 3 cao nhất là 1 ,biết h(1)=2;h(2)=5;H(4)=17;H(-3)=10.Tìm đa thức h(x)

Bài 6:Cho biểu thức :A=\(\left(\frac{x^3-1}{x^2-x}+\frac{x^2-4}{x^2-2x}-\frac{2-x}{x}\right):\frac{x+1}{x}\) với x≠0;x≠1;x≠2;x≠-1

1,Rút gọn biểu thức A

2,Tính A biết x thỏa mãn x3-4x2+3x=0

Bài 7:a,Cho a+b+c​​≠0 và a3+b3+c3=3abc.Tính N=\(\frac{a^{2016}+b^{2016}+c^{2016}}{\left(a+b+c\right)^{2016}}\)

b,Tìm số tự nhiên n để n2+4n+2013 là 1 số chính phương

Bai 8: Hình thang ABCD (AB//CD) có 2 đường chéo cắt nhau tại O .Đường thẳng qua O và song song với đáy AB cắt cạnh bên AD ,BC theo thứ tự ở M và N.

a, CMR OM=ON

b,CMR: \(\frac{1}{AB}+\frac{1}{CD}=\frac{2}{MN}\)

c,Biết SAOB=20152(đvị diện tích );SCOD=20162(đvị diện tích ).Tính SABCD

Bài 9:Cho a,b,c là các số dương .Chứng minh bất đẳng thức :

\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}>hoacbang\frac{a+b+c}{2}\)

 

 

 

3
13 tháng 2 2020

áp dụng bđt cauchy-shwarz dạng engel

\(\text{ Σ}_{cyc}\frac{a^2}{b+c}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}\)\(=\frac{a+b+c}{2}\)

13 tháng 2 2020

Ta có hđt \(\text{ Σ}_{cyc}a^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

Mà a+b+c khác 0 nên a = b = c

\(\Rightarrow N=1\)

26 tháng 2 2018

Câu hỏi của trần trúc quỳnh - Toán lớp 9 - Học toán với OnlineMath

Em tham khảo tại đây nhé.

Bài 1:a) tìm x,y,z biết\(x^2+y^2+z^2=xy+yz+zx\)\(x^{2009}+y^{2009}+z^{2009}=3^{2010}\)b) Giải phương trình\(\left(12x+7\right)^2\left(3x+2\right)\left(2x+1\right)=3\)Bài 2:Cho hình thang ABCD(AB//CD), O la giao điểm của hai đường chéo, qua O kẻ đường thẳng song song với AB và cắt AD tại E và cắt BC tại Fa)CMR: Diện tích tam giác AOD bằng diện tích tam giác BOCb)CM: \(\frac{1}{AB}+\frac{1}{CD}=\frac{2}{EF}\)c) Gọi K là điểm bất kì...
Đọc tiếp

Bài 1:

a) tìm x,y,z biết

\(x^2+y^2+z^2=xy+yz+zx\)

\(x^{2009}+y^{2009}+z^{2009}=3^{2010}\)

b) Giải phương trình

\(\left(12x+7\right)^2\left(3x+2\right)\left(2x+1\right)=3\)

Bài 2:Cho hình thang ABCD(AB//CD), O la giao điểm của hai đường chéo, qua O kẻ đường thẳng song song với AB và cắt AD tại E và cắt BC tại F

a)CMR: Diện tích tam giác AOD bằng diện tích tam giác BOC

b)CM: \(\frac{1}{AB}+\frac{1}{CD}=\frac{2}{EF}\)

c) Gọi K là điểm bất kì thuộc OE,nêu cách dựng đường thẳng đi qua K và chia đôi diện tích tam giác DEF

Bài 3: Cho hình bình hành ABCD, vẽ đường thẳng d cắt các cạnh AB, AD tại M và K và cắt đường chéo AC tại G. CMR: \(\frac{AB}{AM}+\frac{AD}{AK}=\frac{AC}{AG}\)

TRONG BÀI 2, BÀI 3 BIẾT CÂU NÀO LÀM CÂU ĐÓ

GIÚP MÌNH BÀI HÌNH NHÉ MÌNH SẼ KẾT BẠN VÀ THƯỞNG 1 TICK/CÂU

 

0
Bài 1: Cho G là trọng tâm △ABC. Qua G vẽ đường thẳng song song AB và AC cắt BC lần lượt tại D, E. Chứng minh: a)\(\frac{BD}{BC}=\frac{1}{3}\) b)\(BD=DE=EC\) Bài 2: Đường thẳng d cắt các cạnh AB, AD và các đường chéo AC của hình bình hành ABCD lần lượt tại E, F, O. Chứng minh: \(\frac{AB}{AE}+\frac{AD}{AF}=\frac{AC}{AO}\) Bài 3: Cho A', B', C' lần lượt nằm trên cạnh BC, AC, AB của △ABC. Biết rằng AA',...
Đọc tiếp

Bài 1: Cho G là trọng tâm △ABC. Qua G vẽ đường thẳng song song AB và AC cắt BC lần lượt tại D, E. Chứng minh:

a)\(\frac{BD}{BC}=\frac{1}{3}\)

b)\(BD=DE=EC\)

Bài 2: Đường thẳng d cắt các cạnh AB, AD và các đường chéo AC của hình bình hành ABCD lần lượt tại E, F, O.

Chứng minh: \(\frac{AB}{AE}+\frac{AD}{AF}=\frac{AC}{AO}\)

Bài 3: Cho A', B', C' lần lượt nằm trên cạnh BC, AC, AB của △ABC. Biết rằng AA', BB', CC' đồng quy tại M.

Chứng minh:\(\frac{AM}{A'M}=\frac{AB'}{CB'}+\frac{AC'}{BC'}\)

Bài 4: Cho △ABC và trung tuyến AM. Điểm O bất kỳ thuộc AM. F là giao điểm của BO và AC, E là giao điểm của OC và AB. Từ M kẻ đường thẳng song song OC cắt AB tại H và đường thẳng song song OB cắt AC tại K.Chứng minh:

a)EF//HK

b)EF//BC

Bài 5: Cho △ABC, kẻ đường thẳng song song BC cắt AB ở D và cắt AC ở E. Qua C kẻ Cx//AB và cắt DE ở G. Gọi H là giao điểm của AC và BG. Kẻ HI//AB (I thuộc BC).Chứng minh:

a)\(DA.EG=DB.DE\)

b)\(HC^2=HE.HA\)

c)\(\frac{1}{HI}=\frac{1}{AB}+\frac{1}{CG}\)

0
6 tháng 5 2019

đề bài: cho hình thanh ABCD (AB//CD). Gọi I là giao điểm của 2 đg chéo AC và BD. Vẽ qua I đường thẳng song song với AB và BC, cắt AD, BC lần lượt tại E,F. chứng minh:

....

bn tự kẻ hình nha :)

a) Xét tg ACD, có: EI // DC

\(\Rightarrow\frac{EI}{DC}=\frac{AI}{AC}\)(1)

Xét tg BCD, có: FI // DC
\(\Rightarrow\frac{FI}{DC}=\frac{IB}{BD}\)(2)

Xét tg ABI, có: AB // CD
\(\Rightarrow\frac{AI}{AC}=\frac{IB}{BD}\) (3)

Từ (1);(2);(3) \(\Rightarrow\frac{IE}{DC}=\frac{IF}{DC}\Rightarrow IE=IF\)

b) Xét tg ACD, EI // DC
=> EI/DC = AE/ AD (1)

Xét tg ADB, EI // AB

=> EI/AB = DE/AD (2)

Từ (1);(2) => \(\frac{EI}{DC}+\frac{EI}{AB}=\frac{AE}{AD}+\frac{DE}{AD}=1\)

\(\Rightarrow EI.\left(\frac{1}{DC}+\frac{1}{AB}\right)=1\Rightarrow\frac{1}{EI}=\frac{1}{DC}+\frac{1}{AB}\)

cmtt, t/có: \(\frac{1}{FI}=\frac{1}{DC}+\frac{1}{AB}\)

\(\Rightarrow\frac{1}{EI}=\frac{1}{FI}=\frac{1+1}{EI+FI}=\frac{2}{EF}=\frac{1}{AB}+\frac{1}{CD}\)