\(\frac{3n-5}{n+4}\)tim n nguyên để M là 1 phân số

tim n

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2018

\(M=\frac{3n-5}{n+4}\) nguyên

\(\Leftrightarrow3n-5⋮n+4\)

\(\Rightarrow\left(3n+12\right)-12-5⋮n+4\)

\(\Rightarrow3\left(n+4\right)-17⋮n+4\)

      \(3\left(n+4\right)⋮n+4\)

\(\Rightarrow-17⋮n+4\)

\(\Rightarrow n+4\inƯ\left(17\right)\)

      \(n\in Z\Rightarrow n+4\in Z\)

\(\Rightarrow n+4\in\left\{-1;1;-17;17\right\}\)

\(\Rightarrow n\in\left\{-5;-3;-21;13\right\}\)

26 tháng 2 2018

Ta có M = \(\frac{3n-5}{n+4}\)là phân số   <=>  n + 4 \(\ne\)0

<=>  n \(\ne\)-4 

M là một số nguyên <=>  \(3n-5⋮n+4\)<=> \(3\left(n+4\right)-17\)\(⋮n+4\)

<=> \(17⋮n+4\)<=>  \(n+4\in\left\{-17;-1;1;17\right\}\)

<=>  \(n\in\left\{-21;-5;-3;13\right\}\)

29 tháng 12 2018

Tả người mà em ghét nhất trong lp

cần gấp

29 tháng 12 2018

xin lỗi mik bấm nhầm

5 tháng 4 2019

Để M nguyên thì 4n+9 chia hết cho 2n+3

<=> 2(2n+3) +3 chia hết cho 2n+3

=> 3 chia hết cho 2n+3

Vì n nguyên nên 2n+3 là ước của 3

Các ước của 3 là 3;1;-1;-3

Do đó,2n+3 thuộc {3;1;-1;-3}

=> n thuộc {0;-0,5;-2;-3}

Vì n nguyên nên n thuộc {0;-2;-3}

Vậy ...

b, chứng minh tương tự nhưng tử ko chia hết cho mẫu

5 tháng 4 2019

a) Để \(M=\frac{4n+9}{2n+3}\)\(\inℤ\)

\(\Rightarrow4n+9⋮2n+3\)

\(\Rightarrow\)\(2(2n+3)+3⋮2n+3\)

Mà 2(2n+3) chia hết cho 2n+3 

=> 2 chia hết cho 2n +3

=> 2n+3 \(\inƯ\left(3\right)\)

TA CÓ BẢNG SAU : ( Lập bảng nha )

phần b mik chưa nghĩ ra nha 

18 tháng 3 2018

a, (n+1)(n+3) là SNT <=> 1 ts = 1; ts còn lại là SNT.

TH1: n+1=1 => n=0 => n+3=3 (t/m)

TH2: n+3=1 => n=-2 => n+1=-1 (không t/m)

=> n=0.

b, A không tối giản => ƯCLN(n+3;n-5) >1

=> ƯCLN(8;n-5) >1 => n-5 chẵn => n lẻ.

18 tháng 3 2018

Ko có số tự nhiên n thõa mãn điều kiện. k mik nhé nếu muốn hỏi j thêm về câu này thì cứ nhắn tin riêng cho mik

5 tháng 5 2021

khó quá

10 tháng 2 2018

khổ qua hya là xem trên mạng ý

25 tháng 3 2018

1, Ta có : ĐK \(n\ne1\)

a, \(\frac{3n+4}{n-1}=\frac{3n-3+7}{n-1}=\frac{3\left(n-1\right)}{n-1}+\frac{7}{n-1}=1+\frac{7}{n-1}\)

để biểu thức có giá trị nguyện thì \(n-1\inƯ\left(7\right)\)

Ta có bảng sau:

n-1-17-7
n208-6

vậy n=-6, 0,2, 8

b, Ta có ĐK \(n\ne-\frac{1}{3}\)

\(\frac{6n-3}{3n+1}=\frac{6n+3-6}{3n+1}=\frac{3\left(3n+1\right)}{3n+1}-\frac{6}{3n+1}=3-\frac{6}{3n+1}\)

để biểu thúc có giá trị nguyên thì \(3n+1\inƯ\left(6\right)\)

kẻ bảng tìm giá trị của n=0,-2/3,1/3, -1, 2/3, -4/3, 5/3, -7/3

c,ĐK : \(n\ne2\) tương tự ta phân tích \(\frac{n^2+3n-1}{n-2}=\frac{n^2-4n+4+7n-5}{n-2}=\frac{\left(n-2\right)^2}{n-2}+\frac{7n-5}{n-2}\)

\(=n-2+\frac{7n-14+9}{n-2}=\left(n-2\right)+7+\frac{9}{n-2}\)

để biểu thức có giá trị nguyên thì \(n-2\inƯ\left(9\right)\)

kẻ bảng tìm giá trị n

d,  ĐK : \(n\ne1\)phân tích:

\(\frac{n^2+5}{n-1}=\frac{n^2-2n+1+2n+4}{n-1}=\frac{\left(n-1\right)^2}{n-1}+\frac{2n-2+6}{n-1}=\left(n-1\right)+2+\frac{6}{n-1}\)

để biểu thức có giá trị nguyên thì\(n-1\inƯ\left(6\right)\)

kẻ bảng tìm giá trị của n

2, a, để A là phân số thì \(2n+3\ne0\Leftrightarrow n\ne-\frac{3}{2}\)

b, để A là số nguyên thì\(\frac{4n+1}{2n+3}=\frac{4n+6-5}{2n+3}=\frac{2\left(2n+3\right)}{2n+3}-\frac{5}{2n+3}\)

hay \(2n+3\notinƯ\left(5\right)\)

kẻ bảng tìm giá trị của n

c, để A lớn nhất thì \(2-\frac{5}{2n+3}\) cũng lớn nhất

\(\frac{5}{2n+3}\)phải nhỏ nhất\(\Rightarrow\)\(2n+3\)lớn nhất  và < 0 vì 5 là số dương

nên\(2n+3=-1\Rightarrow n=-2\)

thay n vào tính A vậy max A =7

để A bé nhất thì\(2-\frac{5}{2n+3}\)cũng bé nhất

\(\Rightarrow\)\(\frac{5}{2n+3}\)lớn nhất\(\Rightarrow\)2n+3 bé nhất và phải lớn hơn 0 

vậy\(2n+3=1\Rightarrow n=-1\)

thay n vào để tìm min A=-3