K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Để hệ có nghiệm duy nhất thì \(\dfrac{m}{m-1}\ne\dfrac{1}{-1}\ne-1\)

=>\(\dfrac{m+m-1}{m-1}\ne0\)

=>\(\dfrac{2m-1}{m-1}\ne0\)

=>\(m\notin\left\{\dfrac{1}{2};1\right\}\)(1)

\(\left\{{}\begin{matrix}mx+y=3\\\left(m-1\right)x-y=7\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}mx+\left(m-1\right)x=3+7\\mx+y=3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x\left(2m-1\right)=10\\mx+y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{10}{2m-1}\\y=3-mx=3-\dfrac{10m}{2m-1}=\dfrac{6m-3-10m}{2m-1}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{10}{2m-1}\\y=\dfrac{-4m-3}{2m-1}\end{matrix}\right.\)

Để x và y trái dấu thì x*y<0

=>\(\dfrac{10}{2m-1}\cdot\dfrac{-4m-3}{2m-1}< 0\)

=>\(\dfrac{10\left(4m+3\right)}{\left(2m-1\right)^2}>0\)

=>4m+3>0

=>m>-3/4

Kết hợp (1), ta được: \(\left\{{}\begin{matrix}m>-\dfrac{3}{4}\\m\notin\left\{\dfrac{1}{2};1\right\}\end{matrix}\right.\)

2: Để x,y là số nguyên thì \(\left\{{}\begin{matrix}10⋮2m-1\\-4m-3⋮2m-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2m-1\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\\-4m+2-5⋮2m-1\end{matrix}\right.\)

=>\(2m-1\in\left\{1;-1;5;-5\right\}\)

=>\(2m\in\left\{2;0;6;-4\right\}\)

=>\(m\in\left\{1;0;3;-2\right\}\)

Kết hợp (1), ta được: \(m\in\left\{0;3;-2\right\}\)

a, Khi \(m=-1\)ta có HPT : \(\hept{\begin{cases}-x+y=-2\\x-y=0\end{cases}}\)

=> HPT vô nghiệm

b, \(\hept{\begin{cases}mx+y=2m\\x+my=m+1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=2m-mx\\x+m\left(2m-mx\right)=m+1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=2m-mx\\\left(1-m^2\right)x=-2m^2+m+1\end{cases}}\)( * )

HPT vô nghiệm

<=> ( * ) vô nghiệm

\(\Leftrightarrow\hept{\begin{cases}1-m^2=0\\-2m^2+m+1\end{cases}}\ne0\)

<=> m = 1 hoặc m = -1 mà m khác 1 và -1/2 

<=> m = -1

a: Khi m=-3 thì hệ phương trình sẽ là:

\(\left\{{}\begin{matrix}-3x+2y=1\\x-2\cdot\left(-3\right)\cdot y=-3-2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-3x+2y=1\\x+6y=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3x+2y=1\\3x+18y=-15\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}20y=-14\\x+6y=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{7}{10}\\x=-5-6y=-5-6\cdot\dfrac{-7}{10}=\dfrac{42}{10}-5=-\dfrac{8}{10}=-\dfrac{4}{5}\end{matrix}\right.\)

b: \(\left\{{}\begin{matrix}mx+2y=1\\x-2my=m-2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=2my+m-2\\m\left(2my+m-2\right)+2y=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=2my+m-2\\2m^2\cdot y+m^2-2m+2y=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=2my+m-2\\y\left(2m^2+2\right)=-m^2+2m+1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\dfrac{-m^2+2m+1}{2m^2+2}\\x=2m\cdot\dfrac{-m^2+2m+1}{2m^2+2}+m-2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\dfrac{-m^2+2m+1}{2m^2+2}\\x=\dfrac{m\left(-m^2+2m+1\right)}{m^2+1}+m-2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\dfrac{-m^2+2m+1}{2m^2+2}\\x=\dfrac{-m^3+2m^2+m+\left(m-2\right)\left(m^2+1\right)}{m^2+1}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{-m^3+2m^2+m+m^3+m-2m^2-2}{m^2+1}=\dfrac{2m-2}{m^2+1}\\y=\dfrac{-m^2+2m+1}{2m^2+2}\end{matrix}\right.\)

x-2y=-1

=>\(\dfrac{2m-2}{m^2+1}-\dfrac{2\cdot\left(-m^2+2m+1\right)}{2m^2+2}=1\)

=>\(\dfrac{2m-2}{m^2+1}-\dfrac{-m^2+2m+1}{m^2+1}=1\)

=>\(\dfrac{2m-2+m^2-2m-1}{m^2+1}=1\)

=>\(m^2-3=m^2+1\)

=>-3=1(vô lý)

8 tháng 3 2020

\(\hept{\begin{cases}mx+y=4\\x-my=1\end{cases}\Rightarrow\hept{\begin{cases}m+m^2y+y=4\\x=1+my\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}x=1+my\\y\left(m+1\right)=4-m\end{cases}\Rightarrow\hept{\begin{cases}y=\frac{4-m}{m^2+1}\\x=\frac{m^2+1+4m-m^2}{m^2+1}=\frac{4m+1}{m^2+1}\end{cases}}}\)

\(\Rightarrow x+y=\frac{8}{m^2+1}\Leftrightarrow\frac{4-m+4m+1}{m^2+1}=\frac{8}{m^2+1}\)

<=> 5+3m=8 <=> m=1

\(\Rightarrow\hept{\begin{cases}x=\frac{4+1}{1+1}=\frac{5}{2}\\y=\frac{4-1}{2}=\frac{3}{2}\end{cases}}\)

5 tháng 4 2020

a) *)Để hệ đã cho vô nghiệm \(\frac{a}{a'}=\frac{b}{b'}\ne\frac{c}{c'}\)

\(\Rightarrow\hept{\begin{cases}\frac{m+1}{5}=\frac{3}{-2}\\\frac{m+1}{5}\ne\frac{5}{3}\end{cases}\Leftrightarrow\hept{\begin{cases}-2m-1=15\\3m+3\ne25\end{cases}\Leftrightarrow}\hept{\begin{cases}m=\frac{-17}{2}\\m\ne\frac{22}{3}\end{cases}}}\)

*) Để hệ có nghiệm duy nhất 

\(\Rightarrow\frac{a}{a'}\ne\frac{b}{b'}\Rightarrow\frac{m+1}{5}\ne\frac{3}{-2}\)

\(\Leftrightarrow-2m-2\ne15\)

\(\Leftrightarrow m\ne\frac{-17}{2}\)

b) Để hpt có nghiệm duy nhất \(\hept{\begin{cases}m\ne\frac{-17}{2}\\x+y=5\end{cases}}\)

Thay x=5-y vào hpt ta có \(\hept{\begin{cases}\left(m+1\right)\left(5-y\right)+3y=5\\5\left(5-y\right)-2y=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(m+1\right)\left(5-y\right)+3y=5\\25-7y=3\end{cases}\Leftrightarrow\hept{\begin{cases}m=\frac{44}{13}\\y=\frac{22}{7}\end{cases}}}\)

Vậy \(m=\frac{44}{13}\)thỏa mãn điều kiện