Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trên tia đối của BA lấy điểm G sao cho BG=DF.
Xét tam giác CDF và tam giác CBG:
CD=CB
^CDF=^CBG=900 => Tam giác CDF=Tam giác CBG(c.g.c)
DF=BG
=> CF=CG (2 cạnh tương ứng)
=> ^CFD=^CGB (2 góc tương ứng)
Ta có: Chu vi tam giác AEF=2a =>AE+AF+EF=2a (1)
Mà a là số đo cạnh của hình vuông ABCD => 2a=AB+AD (2)
Từ (1) và (2)=> AE+AF+EF=AB+AD
<=> AE+AF+EF=AE+AF+DF+BE <=> EF=DF+BE
Lại có: DF=BG => EF=BG+BE <=> EF=EG.
Xét tam giác EFC và tam giác EGC:
EF=EG
EC chung => Tam giác EFC=Tam giác EGC (c.c.c)
CF=CG (cmt)
=> ^EFC=^EGC (2 góc tương ứng) hay ^BGC=^MFC
Mà ^CFD=^CGB => ^MFC=^CFD
Xét tam giác CDF và tam giác CMF:
^CDF=^CMF=900
CF chung => Tam giác CDF=Tam giác CMF (Cạnh huyền góc nhọn)
^CFD=^MFC
=> CD=CM (2 cạnh tương ứng) => CM=a
Mà giá trị của a không đổi (vì là số đo cạnh hình vuông)
=> Độ dài CM không ddổi (đpcm).
Kurokawa Neko làm đung
Giá trị của a ko thay đổi vì số đo cạnh góc vuông
Vậy độ dài CM ko thay đổi
Câu 2:
a: Xét ΔABC có AD/AB=AE/AC
nên DE//BC
=>BDEC là hình thang
mà góc B=góc C
nên BDEC là hình thang cân
b: Xét ΔDEB có
N là trung điểm của DE
M là trung điểm của DB
Do đó: MN là đường trung bình
=>MN//EB và MN=EB/2(1)
Xét ΔECB có
P là trung điểm của EC
Q là trung điểm của BC
Do đó: PQ là đường trung bình
=>PQ//BE và PQ=BE/2(2)
từ (1) và (2) suy ra MN//PQ và MN=PQ
=>MNPQ là hình bình hành
Xét ΔDEC có
N là trung điểm của DE
P là trung điểm của EC
Do đó: NP là đường trung bình
=>NE=DC/2=NM
=>NMQP là hình thoi
a. Xét : \(\Delta ABE,\Delta ACI\)
Có: \(\widehat{BAE}=\widehat{CAI}=90^o\)
\(AB=AC\left(gt\right)\)
Ta có: \(\widehat{ABC}=\widehat{ACI}\) (cùng phụ I)
\(\Rightarrow\Delta ABE=\Delta AIC\left(g.c.g\right)\Rightarrow\begin{cases}CI=BE\\AE=AI\end{cases}\)
b. Lại có: \(AE=AD\left(gt\right)\Rightarrow AI=AD\)
Hình thang IDMC có : AD = AI, AN//DM//CI nên MN = NC
a) tam giác ABC có I là trung điểm AB; M là trung điểm BC nên IM là đường trung bình của tam giác ABC
=> IM// AC; IM=1/2 AC hay IM=AK
Tứ giác AIKM có IM//AK; IM=AK nên tứ giác AIKM là hình bình hành.
lại có Góc A bằng 90 độ, vậy AIKM là hình chữ nhật.
b) tam giác MEF có I là trung điểm của ME, K là trung điểm của MF nên IK là đường trung bình của tam giác MEF
=> IK//EF
IK=1/2EF hayEF=2IK.
c) Tam giác ABC có I là trung điểm của AB
K là trung điểm của AC
=> Ik là đường trung bình của tam giác ABC
=> IK//BC=> IK//HM, hay IKMH là hình thang.
Vì AIMK là hình chữ nhật(cmt)
nên AI//KM => góc AIK=MKI(so le trong)
ta có IK//BC(cmt) => Góc AIK=IBC(đồng vị)
từ hai điều này suy ra Góc IBH=MKI.(1)
Tam giác AHB vuông tại H, có HI là trung tuyến
=> IH=IB => Góc IBH=IHB. mà Góc IHB=HIK
=> Góc IBH = HIK(2)
Từ (1) và (2) suy ra Góc HIK=MKI
HÌnh thang IKMH có 2 góc kề đáy HIK=MKI bằng nhau, nên IKMH là hình thang cân.
d) Ta có Góc HIK=MKI(cmt)
mà góc MKI=AIK(so le trong)
nên góc AIK=HIK
Xét tam giác AIK và HIK có
AI=IH(cmt)
AIK=HIK(cmt)
IK cạnh chung
=> hai tam giác bằng nhau theo trương hợp(c.g.c)
=>HK=AK
=> IK=2HK=2AK
mà IK=1/2BC(cmt); AK=1/2AC, nên ta có:
1/2BC=2.1/2AC
=> AC=1/2BC.
Tam giác ABC vuông tại A, có AC=1/2BC nên tam giác ABC là nửa tam giác đều
=> Góc ACB=60độ=> Góc ABC=30 độ
câu này mình không chắc lắm, theo mình nghĩ thì khi cho IK=2HK thì đây là điều kiện mới, không theo cái cũ nữa
chứ nếu theo cũ thì chắc góc ABC k thể bằng 30 đc.