Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu cuối là gì nhờ
A A A B B B M M M C C C D D D O O O H H H K K K E E E F F F I I I a/Vì C là giao điểm 2 tiếp tuyến (O) nên ta có AC=MC,^OCM=1/2 ^ACD
Tương tự thì BD=DM, ^ODC=1/2 ^BDC.Từ đó suy ra AC+BD=CM+DM=CD và ^COD=90
b/Từ kết quả ở câu a thì ta chỉ cần chứng minh CM.DM=R2=OM2
Ta dễ dàng chứng minh được đẳng thức trên vì ta có \(\Delta OCM~\Delta DOM\left(g.g\right)\)
c/Ta có OC là đường trung trực của AM nên suy ra AM vuông góc OC tại H,H là trung điểm AM
Lại có BM vuông góc với OD tại K,K là trung điểm BM và ^COD=90(cmt)
Suy ra OHMK là hcn
d/Từ câu c suy ra ngay OC//BM, mà O là trung điểm AB nên OC là đtb của tam giác ABE
Suy ra C là trung điểm AE
e/MF cắt HK thì phải
Ta có tam giác AMF có HI//AF,H là trung điểm AM suy ra I là trung điểm MF
f/Gọi T là trung điểm CD, ta dễ thấy (COD) là (T,TO)
Mà ta có TO vuông góc với AB(tính chất đường tb hình thang)
g/ ghi đề dùm
Mỉnh ko hiểu đề cho lắm. Tam giác ABC vuông tại A => AB vuông góc AC, vậy đề còn cho "Từ A vẽ đường vuông góc với AB và AC tại D và E" là sao??? Hơi vô lý.
a) OB=OC (=R) VÀ AB=AC(/c 2 tt cắt nhau)\(\Rightarrow\)OA LÀ ĐƯỜNG TRUNG TRỤC CỦA BC. b) \(BD\perp AB\)(t/c tt) và BE \(\perp AC\)(A \(\varepsilon\left(O\right)\)đường kính BC ). Aps dụng hệ thúc lượng ta có AE*AC=AB\(^2\)=AC\(^2\).
c) c/m OD\(^2=OB^2=OH\cdot OA\)và OH*OA=OK*OF ( \(\Delta OAK\omega\Delta OFH\left(g-g\right)\))\(\Rightarrow\frac{OD}{OF}=\frac{OK}{OD}\)mà góc FOD chung\(\Rightarrow\Delta OKD\omega\Delta ODF\left(c-g-c\right)\Rightarrow\widehat{ODF}=\widehat{OKD}=90\Rightarrow OD\perp DF\Rightarrowđpcm\)