Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho tứ giác ABCD có hai góc đối bù nhau.Đường thẵng AD và BC cắt nhau tai E,hai đường thẵng AB và DC cắt nhau tại F.Kẻ phân giác của hai góc BFC và CEP cắt nhau tại M. CMR góc EMF =90
a: Xét tứ giác EBDA có
EB//DA
EA//DB
Do đó: EBDA là hình bình hành
Xét tứ giác ABDF có
AB//DF
AF//BD
Do đó: ABDF là hình bình hành
a) xét tam giác BAD ta có:
M là trung điểm AB (gt)
F là trung điểm BD (gt)
vậy MF là đường trung bình tam giác BAD
=>MF//AD và MF=1/2 AD (1)
xét tam giác ADC ta có:
P là trung điểm CD (gt)
E là trung điểm AC (gt)
vậy PE là đường trung bình tam giác ADC
=>PE//AD và PE=1/2 AD (2)
từ (1) và (2) => PE//MF và PE=MF=1/2 AD
tương tự như vậy với ME và PF ta có được ME//PF và ME=PF=1/2 BC
ta có:
ME=PF=1/2 BC (cmt)
MF=PE=1/2 AD (cmt)
AD=BC (gt)
vậy ME=PF=MF=PE
=>MEPF là hình thoi
b) vẽ tứ giác MQPN. gọi giao điểm QN và MP là K
xét tam giác ABD ta có:
Q là trung điểm AD (gt)
M là trung điểm AB (gt)
vậy MQ là đường trung bình tam giác ABD
=> MQ//BD và MQ=1/2 BD (1)
xét tam giác CBD ta có:
P là trung điểm CD (gt)
N là trung điểm BC (gt)
vậy PN là đường trung bình tam giác CBD
=> PN//BD và PN=1/2 BD (2)
từ (1) và (2)=> PN//MQ và PN=MQ
=>MQPN là hình bình hành
mà QN và MP là hai đường chéo và K là giao điểm
=>K là trung điểm của QN và MP (3)
xét hình thoi MEPF ta có:
MP và EF là hai đường chéo
K là trung điểm MP (cmt)
=> K là trung điểm EF (4)
từ (3) và (4)=> QN,MP,EF đồng quy tại K.