K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2023

Ta có \(3AB^2=AC'^2=9a^2\) \(\Leftrightarrow AB^2=3a^2\Leftrightarrow AB=a\sqrt{3}\)

\(\Rightarrow V_{hlp}=AB^3=3a^3\sqrt{3}\) (đơn vị thể tích)

NV
27 tháng 7 2020

Trong mặt phẳng (ABCD), kéo dài AM cắt DC tại E \(\Rightarrow\) C là trung điểm DE (t/c đường trung bình)

Trong mặt phẳng CDD'C' nối EI kéo dài lần lượt cắt CC' và DD' tại P và Q

Mặt phẳng (AMI) cắt lập phương theo thiết diện là tứ giác AMPQ

Gọi N là trung điểm CD \(\Rightarrow\left\{{}\begin{matrix}IN//DD'\\CN=\frac{1}{2}CD\end{matrix}\right.\) \(\Rightarrow\frac{EN}{ED}=\frac{\frac{3a}{2}}{2a}=\frac{3}{4}\)

Talet: \(\frac{EN}{ED}=\frac{IN}{DQ}=\frac{3}{4}\Rightarrow DQ=\frac{4}{3}IN=\frac{4}{3}.\frac{a}{2}=\frac{2a}{3}\)

\(CP=\frac{1}{2}DQ=\frac{a}{3}\) (đường trung bình)

\(V_{MCP.ADQ}=V_{E.ADQ}-V_{E.MCP}=\frac{1}{6}\left(ED.AD.DQ-EC.MC.CP\right)\)

\(=\frac{1}{6}\left(2a.a.\frac{2a}{3}-a.\frac{a}{2}.\frac{a}{3}\right)=\frac{7a^3}{36}\)

\(\Rightarrow V=V_{ABCD.A'B'C'D'}-\frac{7a^3}{26}=a^3-\frac{7a^3}{36}=\frac{29a^3}{36}\)

NV
10 tháng 7 2020

Gọi M là trung điểm A'C \(\Rightarrow\) M là trung điểm BD'

\(\Rightarrow MD'=\frac{1}{2}BD'\)

\(GM=\frac{1}{3}BM=\frac{1}{3}MD'\Rightarrow GD'=\frac{2}{3}BD'\)

\(\Rightarrow d\left(G;\left(CDD'C'\right)\right)=\frac{2}{3}d\left(B;\left(CDD'C'\right)\right)=\frac{2}{3}BC=\frac{2a}{3}\)

\(\Rightarrow V_{GC'DD'}=\frac{1}{3}.\frac{2a}{3}.\frac{1}{2}a^2=\frac{a^3}{9}\)

17 tháng 12 2018

Đáp án là B

Gọi x là độ dài của cạnh hình lập phương

Ta có: 

Theo giả thiết, 

Vậy thể tích lập phương là: