Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x x' y y' O m n
a) +) Vì Ox đối với Ox' và Oy đối với Oy' nên \(\widehat{xOy}\) và \(\widehat{x'Oy'}\) đối đỉnh
\(\Rightarrow\)\(\widehat{xOy}=\)\(\widehat{x'Oy'}\)
hay \(\widehat{x'Oy'}\)\(=40^0\)
+) Ta có: \(\widehat{xOy}+\widehat{x'Oy}=180^0\) (kề bù)
hay \(40^0+\widehat{x'Oy}=180^0\)
\(\Leftrightarrow\widehat{x'Oy}=180^0-40^0\)
\(\Leftrightarrow\widehat{x'Oy}=140^0\)
+) Ta có: \(\widehat{xOy}+\widehat{xOy'}=180^0\) (kề bù)
hay \(40^0+\widehat{xOy'}=180^0\)
\(\Leftrightarrow\widehat{xOy'}=180^0-40^0\)
\(\Leftrightarrow\widehat{xOy'}=140^0\)
b) Vì \(\widehat{xOy}=\widehat{x'Oy'}\)(hai góc đối đỉnh)
Mà Om là tia phân giác của góc xOy và On là tia phân giác của x'Oy' nên Om đối On (đpcm)
y m x O x' n y'
a, Vì góc x'Oy' và góc xOy là hai góc đối đỉnh, mà \(\widehat{xOy}=40^0\)nên \(\widehat{x'Oy'}=40^0\). Góc xOy và góc xOy' là hai góc kề bù nên \(\widehat{xOy}+\widehat{xOy'}=180^0\)hay \(40^0+\widehat{xOy'}=180^0\)
=> \(\widehat{xOy'}=180^0-40^0=140^0\)
Góc xOy' là góc đối đỉnh với góc xOy' nên \(\widehat{xOy}=\widehat{x'Oy}=140^0\)
b, Om,On theo thứ tự là các tia phân giác của hai góc xOy và x'Oy' nên \(\widehat{xOm}=\widehat{mOy}=\frac{1}{2}\widehat{xOy}\)và \(\widehat{nOx'}=\widehat{mOy'}=\frac{1}{2}\widehat{x'Oy'}\)mà \(\widehat{xOy}=\widehat{x'Oy'}\), do đó \(\widehat{xOm}=\widehat{mOy}=\widehat{nOx'}=\widehat{nOy'}=\frac{1}{2}\widehat{xOy}\).
Ta có : \(\widehat{xOm}=\widehat{nOy'}=\widehat{y'Ox}=\widehat{xOm}=\widehat{y'Ox}+\widehat{xOm}+\widehat{mOy}\)
\(=\widehat{y'Ox}+\widehat{xOy}=180^0\)
Góc mOn là góc bẹt,vì thế hai tia Om,On là hai tia đối nhau
x O y y' x' t t'
+) Tính \(\widehat{yOx'}\)
Ta có: \(\widehat{yOx'}+\widehat{xOy}=180^0\)(kề bù)
hay \(\widehat{yOx'}+36^0=180^0\)
\(\Leftrightarrow\widehat{yOx'}=180^0-36^0\)
\(\Leftrightarrow\widehat{yOx'}=144^0\)
Vậy \(\widehat{yOx'}=144^0\)
+) Tính \(\widehat{y'Ox'}\)
Vì hai đường thẳng xx' và yy' cắt nhau tại O nên \(\widehat{y'Ox'}\) và \(\widehat{yOx}\)là hai góc đối đỉnh.
\(\Rightarrow\widehat{y'Ox'}=\widehat{xOy}=36^0\)
Vậy \(\widehat{y'Ox'}=36^0\)
+) Tính \(\widehat{y'Ox}\)
Vì hai đường thẳng xx' và yy' cắt nhau tại O nên \(\widehat{y'Ox}\) và \(\widehat{yOx'}\)là hai góc đối đỉnh.
\(\Rightarrow\widehat{yOx'}=\widehat{xOy}'=144^0\)
Vậy \(\widehat{y'Ox}=144^0\)
b) Vì \(\widehat{y'Ox'}=\widehat{xOy}\)mà Ot là tia phân giác của \(\widehat{xOy}\),mà Ot' là tia phân giác của \(\widehat{x'Oy'}\)nên Ot và Ot' (điều hiển nhiên)
xOy + x'Oy = 180 độ ( kề bù )
Thay xOy = 4 x'Oy ta có
4 x'Oy + x'Oy = 180 độ
=> 5 x'Oy = 180 độ
=> x'Oy = 36 độ
=> xOy = 4 . x'Oy = 4 . 36 = 144 độ
xOy = x'Oy' = 144 độ ( hai góc đối đỉnh
D là ý đúng
a) Vì O1 và O2 là 2 góc đối đỉnh nên O1=O2=60\(^0\)
Vì O1 và O4 là 2 góc kề bù nên
O1+O4=180\(^0\)
Thay \(60^0+O4=180^0\)
\(O4=180^0-60^0=120^0\)
Vậy x'Oy' = \(60^0,x'Oy=120^0\)
b) góc xOy và góc x'Oy'; góc xOy' và góc yOx' là 2 góc đối đỉnh