![](https://rs.olm.vn/images/avt/0.png?1311)
\(\le\) x < 90 độ) thỏa mãn \(sinx=\dfrac{4}{5...">
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời. 3.3 d) \(\sin8x-\cos6x=\sqrt{3}\left(\sin6x+\cos8x\right)\\
\Leftrightarrow\sin8x-\sqrt{3}\cos8x=\sqrt{3}\sin6x+\cos6x\\
\Leftrightarrow\sin\left(8x-\dfrac{\pi}{3}\right)=\sin\left(6x+\dfrac{\pi}{6}\right)\\
\Leftrightarrow\left[{}\begin{matrix}8x-\dfrac{\pi}{3}=6x+\dfrac{\pi}{6}+k2\pi\\8x-\dfrac{\pi}{3}=\pi-\left(6x+\dfrac{\pi}{6}\right)+k2\pi\end{matrix}\right.\\
\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\x=\dfrac{\pi}{12}+k\dfrac{\pi}{7}\end{matrix}\right.\) 3.4 a) \(2sin\left(x+\dfrac{\pi}{4}\right)+4sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{3\sqrt{2}}{5}\\
\Leftrightarrow2cos\left(\dfrac{\pi}{2}-x-\dfrac{\pi}{4}\right)+4sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{3\sqrt{2}}{5}\\
\Leftrightarrow2cos\left(-x+\dfrac{\pi}{4}\right)+4sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{3\sqrt{2}}{5}\\
\Leftrightarrow2cos\left(x-\dfrac{\pi}{4}\right)+4sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{3\sqrt{2}}{5}\\
\) Chia hai vế cho \(\sqrt{2^2+4^2}=2\sqrt{5}\) Ta được: \(\dfrac{1}{\sqrt{5}}cos\left(x-\dfrac{\pi}{4}\right)+\dfrac{2}{\sqrt{5}}sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{3}{4}\\
\) Gọi \(\alpha\) là góc có \(cos\alpha=\dfrac{1}{\sqrt{5}}\)và \(sin\alpha=\dfrac{2}{\sqrt{5}}\) Phương trình tương đương: \(cos\left(x-\dfrac{\pi}{4}-\alpha\right)=\dfrac{3}{4}\\
\Leftrightarrow x=\pm arscos\left(\dfrac{3}{4}\right)+\dfrac{\pi}{4}+\alpha+k2\pi\) 36. \(sin^2x-cos^2x\ne0\Leftrightarrow cos2x\ne0\) \(\Leftrightarrow x\ne\frac{\pi}{4}+\frac{k\pi}{2}\) 37. \(cos3x\ne cosx\Leftrightarrow\left\{{}\begin{matrix}3x\ne x+k2\pi\\3x\ne-x+k2\pi\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne k\pi\\x\ne\frac{k\pi}{2}\end{matrix}\right.\) \(\Leftrightarrow x\ne\frac{k\pi}{2}\) 38. \(\left\{{}\begin{matrix}x\ge0\\sin\pi x\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\pi x\ne k\pi\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne k\end{matrix}\right.\) 39. \(\left\{{}\begin{matrix}cos\left(x-\frac{\pi}{3}\right)\ne0\\tan\left(x-\frac{\pi}{3}\right)\ne-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x-\frac{\pi}{3}\ne\frac{\pi}{2}+k\pi\\x-\frac{\pi}{3}\ne-\frac{\pi}{4}+k\pi\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{5\pi}{6}+k\pi\\x\ne-\frac{\pi}{12}+k\pi\end{matrix}\right.\) 33. \(\left\{{}\begin{matrix}cosx\ne0\\cos\frac{x}{2}\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{\pi}{2}+k\pi\\x\ne\pi+k2\pi\end{matrix}\right.\) 34. \(\left\{{}\begin{matrix}sinx\ne0\\cosx\ne0\\cotx\ne1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}sin2x\ne0\\cotx\ne1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{k\pi}{2}\\x\ne\frac{\pi}{4}+k\pi\end{matrix}\right.\) 35. \(\left\{{}\begin{matrix}sinx\ne0\\cosx\ne1\end{matrix}\right.\) \(\Leftrightarrow sinx\ne0\) \(\Leftrightarrow x\ne k\pi\) m) $\sin 4x-\cos ^4x=\cos x-2$ $\Leftrightarrow (\sin ^2x+\cos ^2x)(\sin ^2x-\cos ^2x)=\cos x-2$ $\Leftrightarrow \sin ^2x-\cos ^2x=\cos x-2$ $\Leftrightarrow 1-2\cos ^2x=\cos x-2$ $\Leftrightarrow 2\cos ^2x+\cos x-3=0$ $\Leftrightarrow (2\cos x+3)(\cos x-1)=0$ Nếu $2\cos x+3=0\Rightarrow \cos x=\frac{-3}{2}< -1$ (loại) Nếu $\cos x-1=0\Rightarrow \cos x=1\Rightarrow x=2k\pi$ với $k$ nguyên k) ĐK:....... $\tan ^25x=\frac{1}{3}\Rightarrow \tan 5x=\pm \sqrt{\frac{1}{3}}$ $\Rightarrow 5x=k\pi +\tan ^{-1}\frac{\pm 1}{\sqrt{3}}$ $\Rightarrow x=frac{k}{5}\pi +\tan ^{-1}\frac{\pm 1}{\sqrt{3}}$ với $k$ nguyên. Số đẹp hơn thì có thể giải như sau: $PT \Leftrightarrow \frac{\sin ^25x}{\cos ^25x}=\frac{1}{3}$ $\Rightarrow 3\sin ^25x=\cos ^25x$ $\Rightarrow 4\\sin ^25x=1\Rightarrow \sin 5x=\pm \frac{1}{2}$ $\Rightarrow x=\frac{k\pi}{5}\pm \frac{\pi}{30}$ với $k$ nguyên. 1: \(\Leftrightarrow4\cdot\dfrac{1+\cos2x}{2}-6\cdot\dfrac{1-\cos2x}{2}+5\sin2x-4=0\) \(\Leftrightarrow2+2\cos2x-3+3\cos2x+5\sin2x-4=0\) \(\Leftrightarrow5\sin2x+5\cos2x=5\) \(\Leftrightarrow\cos2x+\sin2x=1\) \(\Leftrightarrow\sqrt{2}\cdot\sin\left(2x+\dfrac{\Pi}{4}\right)=1\) \(\Leftrightarrow\sin\left(2x+\dfrac{\Pi}{4}\right)=\dfrac{1}{\sqrt{2}}\) \(\Leftrightarrow\left\{{}\begin{matrix}2x+\dfrac{\Pi}{4}=\dfrac{\Pi}{4}+k2\Pi\\2x+\dfrac{\Pi}{4}=\dfrac{3\Pi}{4}+k2\Pi\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=k\Pi\\x=\dfrac{\Pi}{4}+k\Pi\end{matrix}\right.\) 2: \(\Leftrightarrow\sqrt{3}\cdot\dfrac{1+\cos2x}{2}+\sin2x-\sqrt{3}\cdot\dfrac{1-\cos2x}{2}-1=0\) \(\Leftrightarrow\dfrac{\sqrt{3}}{2}+\dfrac{\sqrt{3}}{2}\cos2x+\sin2x+\sqrt{3}\cdot\dfrac{\cos2x-1}{2}-1=0\) \(\Leftrightarrow\sin2x+\dfrac{\sqrt{3}}{2}\cos2x+\dfrac{\sqrt{3}}{2}\cos2x-\dfrac{\sqrt{3}}{2}+\dfrac{\sqrt{3}-2}{2}=0\) \(\Leftrightarrow\sin2x+\sqrt{3}\cos2x=\dfrac{\sqrt{3}-\sqrt{3}+2}{2}=1\) \(\Leftrightarrow\sin\left(2x+\dfrac{\Pi}{3}\right)=\dfrac{1}{2}\) \(\Leftrightarrow\left\{{}\begin{matrix}2x+\dfrac{\Pi}{3}=\dfrac{\Pi}{6}+k2\Pi\\2x+\dfrac{\Pi}{3}=\dfrac{5}{6}\Pi+k2\Pi\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{12}\Pi+k\Pi\\x=\dfrac{\Pi}{4}+k\Pi\end{matrix}\right.\) 6. \(\Leftrightarrow\frac{1}{2}cos6x+\frac{1}{2}cos4x=\frac{1}{2}cos6x+\frac{1}{2}cos2x+\frac{3}{2}+\frac{3}{2}cos2x+1\) \(\Leftrightarrow cos4x=4cos2x+5\) \(\Leftrightarrow2cos^22x-1=4cos2x+5\) \(\Leftrightarrow cos^22x-2cos2x-3=0\) \(\Leftrightarrow\left[{}\begin{matrix}cos2x=-1\\cos2x=3>1\left(ktm\right)\end{matrix}\right.\) \(\Leftrightarrow...\) 7. Thay lần lượt 4 đáp án ta thấy chỉ có đáp án C thỏa mãn 8. \(\Leftrightarrow\left[{}\begin{matrix}sinx=1\\sinx=\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\) \(\Rightarrow x=\left\{\frac{\pi}{6};\frac{\pi}{2}\right\}\) 9. Đặt \(sinx+cosx=t\Rightarrow\left\{{}\begin{matrix}-1\le t\le1\\sinx.cosx=\frac{t^2-1}{2}\end{matrix}\right.\) \(\Rightarrow mt+\frac{t^2-1}{2}+1=0\) \(\Leftrightarrow t^2+2mt+1=0\) Pt đã cho có đúng 1 nghiệm thuộc \(\left[-1;1\right]\) khi và chỉ khi: \(\left[{}\begin{matrix}m\ge1\\m\le-1\end{matrix}\right.\) 10. \(\frac{\sqrt{3}}{2}cos5x-\frac{1}{2}sin5x=cos3x\) \(\Leftrightarrow cos\left(5x-\frac{\pi}{6}\right)=cos3x\) \(\Leftrightarrow\left[{}\begin{matrix}5x-\frac{\pi}{6}=3x+k2\pi\\5x-\frac{\pi}{6}=-3x+k2\pi\end{matrix}\right.\) 1. Đặt \(sinx+cosx=t\Rightarrow\left\{{}\begin{matrix}\left|t\right|\le\sqrt{2}\\sinx.cosx=\frac{t^2-1}{2}\end{matrix}\right.\) Pt trở thành: \(t^3+\frac{t^2-1}{2}-1=0\) \(\Leftrightarrow2t^3+t^2-3=0\) \(\Leftrightarrow\left(t-1\right)\left(2t^2+3t+3\right)=0\) \(\Leftrightarrow t=1\) \(\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\) \(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{4}=\frac{\pi}{4}+k2\pi\\x+\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\) \(\Leftrightarrow...\) 4. Đặt \(sinx-cosx=t\Rightarrow\left\{{}\begin{matrix}\left|t\right|\le\sqrt{2}\\sinx.cosx=\frac{1-t^2}{2}\end{matrix}\right.\) Pt trở thành: \(t^3=1+\frac{1-t^2}{2}\) \(\Leftrightarrow2t^3+t^2-3=0\) \(\Leftrightarrow\left(t-1\right)\left(2t^2+3t+3\right)=0\) \(\Leftrightarrow t=1\) \(\Leftrightarrow sin\left(x-\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\) \(\Leftrightarrow...\)