Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`Answer:`
Ta có `hat{zOt}+\hat{yOz}=90^o`
\(\Rightarrow\frac{1}{2}.Oz+\widehat{yOz}=90^o\)
\(\Rightarrow\frac{1}{2}.4\widehat{yOz}+\widehat{yOz}=90^o\)
\(\Rightarrow\widehat{yOz}.3=90^o\)
\(\Rightarrow\widehat{yOz}=30^o\)
`=>\hat{xOz}=120^o` (Vì `\hat{xOz}=4\hat{yOz}`
Vậy `\hat{xOy}=\hat{yOz}+\hat{xOz}=120^o+30^o=150^o`
mik nhớ là. hai góc kề bù thì thường là 180 độ, s lại là 160 đọ nhỉ, sai đề
a. Ta có⎪⎨⎪⎩ˆAOD+ˆCOD=90 độ (=ˆAOC)ˆBOC+ˆCOD=90 độ (=ˆBOD)
⇒ˆAOD=ˆBOC
b) Ta có: ⎧⎪⎨⎪⎩ˆAOD+ˆCOD=90 độ (=ˆAOC)ˆBOC+ˆCOD=900 độ (=ˆBOD)
⇒ˆAOD+ˆBOC+ˆCOD+ˆCOD=180 độ
Mà: ˆAOD+ˆBOC+ˆCOD=ˆAOB
⇒ˆAOB+ˆCOD=180 độ
a) Ta có: \(\left\{{}\begin{matrix}\widehat{AOD}+\widehat{COD}=90^0\left(=\widehat{AOC}\right)\\\widehat{BOC}+\widehat{COD}=90^0\left(=\widehat{BOD}\right)\end{matrix}\right.\)
\(\Rightarrow\widehat{AOD}=\widehat{BOC}\)
b) Ta có: \(\left\{{}\begin{matrix}\widehat{AOD}+\widehat{COD}=90^0\left(=\widehat{AOC}\right)\\\widehat{BOC}+\widehat{COD}=90^0\left(=\widehat{BOD}\right)\end{matrix}\right.\)
\(\Rightarrow\widehat{AOD}+\widehat{BOC}+\widehat{COD}+\widehat{COD}=180^0\)
Mà: \(\widehat{AOD}+\widehat{BOC}+\widehat{COD}=\widehat{AOB}\)
\(\Rightarrow\widehat{AOB}+\widehat{COD}=180^0\)
2.
\(Oc\perp Od\Rightarrow\widehat{cOd}+\widehat{aOd}=90^o\)
\(Od\perp Ob\Rightarrow\widehat{bOc}+\widehat{cOd}=90^o\)
suy ra \(\widehat{aOd}=\widehat{bOc}\)( cùng phụ với \(\widehat{cOd}\))
b) \(\widehat{aOb}+\widehat{cOd}=\left(\widehat{aOd}+\widehat{cOd}+\widehat{bOc}\right)+\widehat{cOd}=\left(\widehat{aOd}+\widehat{cOd}\right)+\left(\widehat{bOc}+\widehat{cOd}\right)\)
\(=90^o+90^o=180^o\)
Vì các tia và ở trong góc nên:
(1)
(2)
Từ (1) và (2), suy ra: .
b) Ta có
c) Từ giả thiết, ta có: .
Mà .
Vậy .
Những bài này có thể search trên google trước khi làm nhé
Link tham khảo :
Câu hỏi của Vương Hàn - Toán lớp 7 | Học trực tuyến
Good Luck
mình sửa bài 1. bạn ghi đề sai " ác " quá
1. cho góc \(\widehat{xOy}\)và tia Oz nằm trong góc đó sao cho \(\widehat{xOz}=4.\widehat{yOz}\). tia phân giác Ot của góc xOz sao cho .....
Ta có : \(Ot\perp Oy\)nên \(\widehat{zOt}+\widehat{yOz}=90^o\)
Mà Ot là phân giác của \(\widehat{xOz}\)nên \(\widehat{zOt}=\frac{1}{2}.\widehat{xOz}\)
\(\Rightarrow\frac{1}{2}.\widehat{xOz}+\widehat{yOz}=90^o\)
Mà \(\widehat{xOz}=4.\widehat{yOz}\)
\(\Rightarrow\frac{1}{2}.4.\widehat{yOz}+\widehat{yOz}=90^o\Rightarrow3.\widehat{yOz}=90^o\Rightarrow\widehat{yOz}=30^o\)
Do đó : \(\widehat{xOy}=\widehat{xOz}+\widehat{yOz}=4.\widehat{yOz}+\widehat{yOz}=5.\widehat{yOz}=150^o\)