Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có góc AOM = 90 độ( gt góc xOy vuông)(1)
mặt khác ta có tam giác AEB nt đg tròn (t)
=> góc AEB=90 độ (2)
từ (1) (2) => tứ giác OAEM nội tiếp=> O,A,E,M
a) Ta thấy \(\widehat{AOM}=\widehat{AEM}=90^o\Rightarrow\) OAEM là tứ giác nội tiếp hay O, A, E, M cùng thuộc một đường tròn.
b) Do OAEM là tứ giác nội tiếp nên \(\widehat{AMO}=\widehat{AEO}\) (hai góc nội tiếp cùng chắn một cung)
Mà \(\widehat{AEO}=\widehat{ACF}\)(hai góc nội tiếp cùng chắn một cung)
Vì vậy nên \(\widehat{AMO}=\widehat{ACF}\) . Chúng lại ở vị trí so le trong nên CF // OM
Vậy OCFM là hình thang.
c) Câu này cô sửa lại đề. Theo cô phải là \(OE.OF+BE.BM=OB^2\) mới đúng.
Cô sẽ chứng minh theo đẳng thức đó.
Ta thấy ngay \(\Delta BEA\sim\Delta BOM\left(g-g\right)\Rightarrow\frac{BE}{BO}=\frac{BA}{BM}\Rightarrow BE.BM=OB.AB\)
Ta thấy rằng \(\widehat{BEF}+\widehat{BAF}=180^o=\widehat{OAF}+\widehat{BAF}\Rightarrow\widehat{BEF}=\widehat{OAF}\)
Vậy thì \(\Delta OAF\sim\Delta OEB\left(g-g\right)\Rightarrow\frac{OA}{OE}=\frac{OF}{OB}\Rightarrow OE.OF=OB.AO\)
Từ đó suy ra \(OE.OF+BE.BM=OB.AB+OB.AO=OB\left(BA+AO\right)=OB^2\)
a: Xét (T) có
ΔAEB nội tiếp
AB là đường kính
Do đó: ΔAEB vuông tại E
=>AE\(\perp\)BM tại E
Xét tứ giác MOAE có \(\widehat{MOA}+\widehat{MEA}=90^0+90^0=180^0\)
nên MOAE là tứ giác nội tiếp
=>M,O,A,E cùng thuộc một đường tròn
Xin lỗi bạn nha ! Vì lỗi nên mình không vẽ được hình cho bạn ,có j bạn tự vẽ nha !!!
Bài giải
a) AB là tiếp tuyến tại A của ( C)
=> \(\widehat{BAF}=\widehat{AEF}\)
Xét \(\Delta ABF\)và \(\Delta EBA\)có :
\(\hept{\begin{cases}\widehat{ABE}chung\\\widehat{BAF}=\widehat{BEA}\end{cases}\Rightarrow\Delta ABF}\infty\Delta EBA\left(g-g\right)\)
\(\Rightarrow\frac{AB}{BE}=\frac{BF}{AB}\Rightarrow AB^2=BE.BF\)
Xét \(\Delta ABC\) vuông tại A có đường cao AH .
=> AB2 =BH . BC
=> BH . BC = BE . BF ( =AB2 )
Xét \(\Delta BHF\)và \(\Delta BEC\)có :
\(\frac{BH}{BE}=\frac{BF}{BC}\)
\(\widehat{CBE}\)chung
=> \(\Delta BHF\infty\Delta BEC\left(c-g-c\right)\)
=> \(\widehat{BHF}=\widehat{BEC}\)
*) \(\widehat{BHF}+\widehat{FHC}=\widehat{BEC}+\widehat{FHC}\)
\(\Leftrightarrow\widehat{FEC}+\widehat{FHC}=\widehat{BHC}=180^O\)
=> EFHC là tứ giác nội tiếp ( có tổng 2 góc đối =180 o
b) EFHC là tứ giác nội tiếp
=> \(\widehat{EHC}=\widehat{EFC}\)( cùng chắn góc EC )
\(\widehat{FEC}=\widehat{BHF}\)( c/ m cân A )
Mà \(\widehat{FEC}=\widehat{EFC}\)( \(\Delta ECF\)cân ở C )
=> \(\widehat{EHC}=\widehat{BHF}\)
=> 90O \(-\widehat{EHC}=90^O-\widehat{BHF}\)
<=> \(\widehat{EHD}=\widehat{FHD}\)
=> HD là phân giác góc EHF
Ta có : ÐAMB = 900 ( nội tiếp chắn nửa đường tròn )
=> ÐKMF = 900 (vì là hai góc kề bù).
ÐAEB = 900 ( nội tiếp chắn nửa đường tròn )
=> ÐKEF = 900 (vì là hai góc kề bù).
=> ÐKMF + ÐKEF = 1800 . Mà ÐKMF và ÐKEF là hai góc đối của tứ giác EFMK do đó EFMK là tứ giác nội tiếp.
1. Ta có ÐIAB = 900 ( vì AI là tiếp tuyến ) => DAIB vuông tại A có AM ^ IB ( theo trên).
Áp dụng hệ thức giữa cạnh và đường cao => AI2 = IM . IB.
2. Theo giả thiết AE là tia phân giác góc IAM => ÐIAE = ÐMAE => AE = ME (lí do ……)
=> ÐABE =ÐMBE ( hai góc nội tiếp chắn hai cung bằng nhau) => BE là tia phân giác góc ABF. (1)
Theo trên ta có ÐAEB = 900 => BE ^ AF hay BE là đường cao của tam giác ABF (2).
Từ (1) và (2) => BAF là tam giác cân. tại B .
3. BAF là tam giác cân. tại B có BE là đường cao nên đồng thời là đương trung tuyến => E là trung điểm của AF. (3)
Từ BE ^ AF => AF ^ HK (4), theo trên AE là tia phân giác góc IAM hay AE là tia phân giác ÐHAK (5)
Từ (4) và (5) => HAK là tam giác cân. tại A có AE là đường cao nên đồng thời là đương trung tuyến => E là trung điểm của HK. (6).
Từ (3) , (4) và (6) => AKFH là hình thoi ( vì có hai đường chéo vuông góc với nhau tại trung điểm của mỗi đường).
4. (HD). Theo trên AKFH là hình thoi => HA // FK hay IA // FK => tứ giác AKFI là hình thang.
Để tứ giác AKFI nội tiếp được một đường tròn thì AKFI phải là hình thang cân.
AKFI là hình thang cân khi M là trung điểm của cung AB.
Thật vậy: M là trung điểm của cung AB => ÐABM = ÐMAI = 450 (t/c góc nội tiếp ). (7)
Tam giác ABI vuông tại A có ÐABI = 450 => ÐAIB = 450 .(8)
Từ (7) và (8) => ÐIAK = ÐAIF = 450 => AKFI là hình thang cân (hình thang có hai góc đáy bằng nhau).
Vậy khi M là trung điểm của cung AB thì tứ giác AKFI nội tiếp được một đường tròn.
a; ta có : BEA = 90o (góc nội tiếp chắng nữa đường tròn)
BAE + ABE = 90o (BEA = 90o)
mà OMB + OBM = 90o (xOy = 90o)
\(\Rightarrow\) BAE = EMO
mà BAE + EAO =180o
\(\Rightarrow\) EAO + EMO = 180o (BAE = EMO)
xét tứ giác AOME
ta có : EAO + EMO = 180o
mà EAO và EMO là 2 góc đối nhau của tứ giác AOME
\(\Rightarrow\) tứ giác AOME là tứ giác nội tiếp
\(\Leftrightarrow\) A,O,M,E cùng thuộc 1 đường tròn (đpcm)
2) pt\(\Leftrightarrow x^2-mx+2002-m=0\).
Để phương trình có nghiệm thì:
\(\Delta\ge0\Leftrightarrow m^2-4.\left(2002-m\right)\ge0\) (*)
Theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=2002-m\end{matrix}\right.\)
Suy ra: \(x_1+x_2+x_1x_2=2002\Leftrightarrow x_1\left(1+x_2\right)+x_2+1=2003\)
\(\Leftrightarrow\left(x_1+1\right)\left(x_2+1\right)=2003\).
Do \(x_1;x_2\in Z\) nên \(x_1+1\inƯ\left(2003\right)=\left\{1;2003;-1;-2003\right\}\)
\(\Leftrightarrow x_1\in\left\{0,2002,-2,-2004\right\}\).
Thay lần lượt các giá trị x vào phương trình ta được:
Với \(x=0\Rightarrow m=2002\). (thỏa mãn *).
Với \(x=2002\Rightarrow m=20,96\) (loại)
Với \(x=-2\Rightarrow m=-2006\) (thỏa mãn *)
Với \(x=-2003\Rightarrow m=-2003\) (thỏa mãn *)