K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2016

1/ Tinh ∆. Pt co 2 nghiem x1,x2 <=> ∆>=0.
Theo dinh ly Viet: S=x1+x2=-b/a=m+3.
Theo gt: |x1|=|x2| <=> ...

2/ \(\frac{\sin^2x-\cos^2x}{1+2\sin x.\cos x}\)

\(=\frac{\cos^2x\left(\frac{\sin^2x}{\cos^2x}-\frac{\cos^2x}{\cos^2x}\right)}{\cos^2x\left(\frac{1}{\cos^2x}+\frac{2\sin x.\cos x}{\cos^2x}\right)}\)

\(=\frac{\tan^2x-1}{\tan^2x+1+2\tan x}\)

\(=\frac{\left(\tan x-1\right)\left(\tan x+1\right)}{\left(\tan x+1\right)^2}\)

\(=\frac{\tan x-1}{\tan x+1}\left(dpcm\right)\)

c/ A M C B N BC=8 AC=7 AB=6

  • Ta có: \(\overrightarrow{BA}^2=\left(\overrightarrow{CA}-\overrightarrow{CB}\right)^2\)

\(\Leftrightarrow BA^2=CA^2-2\overrightarrow{CA}.\overrightarrow{CB}+CB^2\)

\(\Leftrightarrow\overrightarrow{CA}.\overrightarrow{CB}=\frac{CA^2+CB^2-BA^2}{2}=\frac{77}{2}\)

  • \(\overrightarrow{MN}^2=\left(\overrightarrow{CN}-\overrightarrow{CM}\right)^2=\left(\frac{3}{2}\overrightarrow{CB}-\frac{5}{7}\overrightarrow{CA}\right)^2\)

\(\Leftrightarrow MN^2=\frac{9}{4}CB^2-\frac{15}{7}\overrightarrow{CA}.\overrightarrow{CB}+\frac{25}{49}CA^2\)

\(=\frac{9}{4}.64-\frac{15}{7}.\frac{77}{2}+\frac{25}{49}.49\)

\(=\frac{173}{2}\)

\(\Rightarrow MN=\sqrt{\frac{173}{2}}=\frac{\sqrt{346}}{2}\)

27 tháng 2 2016

Do tam giác ABC vuông tại A và \(\widehat{B}=30^o\) \(\Rightarrow C=60^o\)

\(\Rightarrow\left(\overrightarrow{AB},\overrightarrow{BC}\right)=150^o;\)\(\left(\overrightarrow{BA},\overrightarrow{BC}\right)=30^o;\left(\overrightarrow{AC},\overrightarrow{CB}\right)=120^o\)

\(\left(\overrightarrow{AB},\overrightarrow{AC}\right)=90^o;\left(\overrightarrow{BC},\overrightarrow{BA}\right)=30^o\).Do vậy:

a) \(\cos\left(\overrightarrow{AB},\overrightarrow{BC}\right)+\sin\left(\overrightarrow{BA},\overrightarrow{BC}\right)+\tan\frac{\left(\overrightarrow{AC},\overrightarrow{CB}\right)}{2}\)

\(=\cos150^o+\sin30^o+\tan60^o\)

\(=-\frac{\sqrt{3}}{2}+\frac{1}{2}+\sqrt{3}\)

\(=\frac{\sqrt{3}+1}{2}\)

b) \(\sin\left(\overrightarrow{AB},\overrightarrow{AC}\right)+\cos\left(\overrightarrow{BC},\overrightarrow{AB}\right)+\cos\left(\overrightarrow{CA},\overrightarrow{BA}\right)\)

\(=\sin90^o+\cos30^o+\cos0^o\)

\(=1+\frac{\sqrt{3}}{2}\)

\(=\frac{2+\sqrt{3}}{2}\)

19 tháng 5 2017

Tích vô hướng của hai vectơ và ứng dụng

Tích vô hướng của hai vectơ và ứng dụng

AH
Akai Haruma
Giáo viên
20 tháng 12 2021

Lời giải:

$\overrightarrow{CM}.\overrightarrow{BN}=(\overrightarrow{CA}+\overrightarrow{AM})(\overrightarrow{BA}+\overrightarrow{AN})$

$=\overrightarrow{CA}.\overrightarrow{BA}+\overrightarrow{CA}.\overrightarrow{AN}+\overrightarrow{AM}.\overrightarrow{BA}+\overrightarrow{AM}.\overrightarrow{AN}$

$=\overrightarrow{AB}.\overrightarrow{AC}+\overrightarrow{CA}.\frac{1}{4}\overrightarrow{AC}+\frac{1}{5}\overrightarrow{AB}.\overrightarrow{BA}+\frac{1}{5}\overrightarrow{AB}.\frac{1}{4}\overrightarrow{AC}$

$=\frac{21}{20}\overrightarrow{AB}.\overrightarrow{AC}-\frac{1}{4}AC^2-\frac{1}{5}AB^2$

$=\frac{21}{20}\cos A.|\overrightarrow{AB}|.|\overrightarrow{AC}|-\frac{1}{4}AC^2-\frac{1}{5}AB^2$

$=\frac{21}{20}.\frac{1}{2}.5.8-\frac{1}{4}.8^2-\frac{1}{5}.5^2=0$

$\Rightarrow CM\perp BN$

20 tháng 8 2019

a) \(\sqrt{2x+2}-\sqrt{2x-1}=x\)

\(\Leftrightarrow2x+2+2x-1-2\sqrt{\left(2x+2\right)\left(2x-1\right)}=x^2\)

\(\Leftrightarrow4x+1-2\sqrt{\left(2x+2\right)\left(2x-1\right)}=x^2\)

\(\Leftrightarrow2\sqrt{4x^2+2x-2}=-x^2+4x+1\)( ĐK: \(2-\sqrt{5}\le x\le2+\sqrt{5}\))

\(\Leftrightarrow4\left(4x^2+2x-2\right)=\left(x^2-4x-1\right)^2\)

\(\Leftrightarrow16x^2+8x-8=x^4-8x^3+14x^2+8x+1\)

\(\Leftrightarrow x^4-8x^3-2x^2+9=0\)

\(\Leftrightarrow x^4-x^3-7x^3+7x^2-9x^2+9=0\)

\(\Leftrightarrow x^3\left(x-1\right)-7x^2\left(x-1\right)-9\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3-7x^2-9x-9\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\left(chon\right)\\x=8,22...\left(loai\right)\end{matrix}\right.\)

Vậy pt có nghiệm duy nhất \(x=-1\)

20 tháng 8 2019

b_em ko chắc đâu, chưa từng làm dạng toán chứa tham số-_-

ĐK: \(x^2\ge-m\) ( ko chắc)

PT<=> \(\left(x-3\right)\sqrt{x^2+m}=\left(x-3\right)\left(x+3\right)\)

\(\Leftrightarrow\left(x-3\right)\left[x+3-\sqrt{x^2+m}\right]=0\)

Thấy ngay x = 3 thỏa mãn. Xét cái ngoặc to

\(\Leftrightarrow x+3=\sqrt{x^2+m}\left(\text{thêm đk }x\ge-3\right)\Leftrightarrow6x+9=m\Leftrightarrow x=\frac{\left(m-9\right)}{6}\)

Do \(x\ge-3\text{nên }m\ge-9\)

Vậy...

25 tháng 12 2020

1.

Gọi G là trọng tâm tam giác

\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{0}\)

\(\Leftrightarrow3\overrightarrow{OG}=\overrightarrow{0}\)

\(\Leftrightarrow O\equiv G\)

\(\Rightarrow O\) là trọng tâm tam giác ABC

\(\Rightarrow\Delta ABC\) đều

Gọi độ dài các cạnh tam giác là a

\(\overrightarrow{BN}.\overrightarrow{AM}=\dfrac{1}{4}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\left(\overrightarrow{BA}+\overrightarrow{BC}\right)=-\dfrac{1}{4}a^2-\dfrac{1}{8}a^2-\dfrac{1}{8}a^2+\dfrac{1}{2}a^2=0\)

Mặt khác \(\overrightarrow{BN}.\overrightarrow{AM}=BN.AM.cos\left(\overrightarrow{AM};\overrightarrow{BN}\right)\)

\(\Rightarrow BN.AM.cos\left(\overrightarrow{AM};\overrightarrow{BN}\right)=0\Rightarrow cos\left(\overrightarrow{AM};\overrightarrow{BN}\right)=0\Rightarrow\left(\overrightarrow{AM};\overrightarrow{BN}\right)=90^o\)

25 tháng 12 2020

\(BD=\dfrac{AB}{cos45^o}=\dfrac{a}{\dfrac{\sqrt{2}}{2}}=a\sqrt{2}\)

\(\overrightarrow{BQ}.\overrightarrow{BP}=\dfrac{1}{4}\left(\overrightarrow{BA}+\overrightarrow{BD}\right)\left(\overrightarrow{BC}+\overrightarrow{BD}\right)\)

\(=\dfrac{1}{4}BA.BC.cos90^o+\dfrac{1}{4}BA.BD.cos45^o+\dfrac{1}{4}BD.BC.cos45^o+\dfrac{1}{4}BD^2\)

\(=\dfrac{1}{4}a^2+\dfrac{1}{4}a^2+\dfrac{1}{2}a^2=a^2\)