Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, (d) đi qua A(1;5) hay A(1;5) thuộc (d)
<=> \(5=4m-3\Leftrightarrow m=2\)
b, Hoành độ giao điểm (P) ; (d) tm pt
\(x^2-2mx-2m+3=0\)
\(\Delta'=m^2-\left(-2m+3\right)=m^2+2m-3\)
Để (P) tiếp xúc (d) thì pt có nghiệm kép khi
\(m^2+2m-3=0\Leftrightarrow\orbr{\begin{cases}m=1\\m=-3\end{cases}}\)
a) (d) đi qua \(A\left(1;5\right)\Rightarrow5=2m+2m-3\Rightarrow4m=8\Rightarrow m=2\)
\(\Rightarrow y=4x+1\)
b) pt hoành độ giao điểm \(x^2-2mx-2m+3=0\)
Để (d) tiếp xúc với (P) thì pt có nghiệm kép \(\Delta=0\)
\(\Delta=\left(2m\right)^2+8m-12=4m^2+8m-12\)
\(\Rightarrow4m^2+8m-12=0\Rightarrow m^2+2m-3=0\Rightarrow\left(m-1\right)\left(m+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}m=1\\m=-3\end{matrix}\right.\)
để (d) song song zới đường thẳng (d')
=>\(\hept{\begin{cases}m+1=3\\-2m\ne4\end{cases}=>\hept{\begin{cases}m=2\\m\ne-2\end{cases}=>m=2}}\)
b)phương trình hoành độ giao điểm của (d) zà (P)
\(\frac{1}{2}x^2-\left(m+1\right)x+2m=0\Rightarrow x^2-2\left(m+1\right)x+4m=0\)
ta có \(\Delta=4\left(m+1\right)^2-4.4m=4\left(m^2+2m+1\right)-16m=4m^2-8m+4=4\left(m-1\right)^2\ge0\)
để d cắt P tại hai điểm phân biệt
=>\(\Delta>0=>\left(m-1\right)^2>0=>m\ne1\)(1)
lại có \(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1x_2=4m\end{cases}}\)
để 2 hoành độ dương \(\Leftrightarrow\hept{\begin{cases}x_1+x_2>0\\x_1x_2>0\end{cases}=>\hept{\begin{cases}2\left(m+1\right)>0\\4m>0\end{cases}=>\hept{\begin{cases}m>-1\\m>0\end{cases}\Rightarrow m>0}}\left(2\right)}\)
từ 1 zà 2 => m khác 1 , m lớn hơn 0 thì (d) cắt (P) tạ điểm phân biệt có hoành độ dương
Hoành độ giao điểm (P) ; (d) tm pt
\(x^2-2mx-m+3=0\)
\(\Delta'=m^2-\left(-m+3\right)=m^2+m-3\)
a, có thiếu đề khum bạn ?
b, Để (P) tiếp xúc (d)
\(m^2+m-3=0\Leftrightarrow m=\dfrac{-1\pm\sqrt{13}}{2}\)
-cần chi tiết hơn thì bạn dùng delta nhé
Phương trình hoành độ giao điểm: \(x^2=2mx+m-3\Leftrightarrow x^2-2mx-m+3=0\) (1)
a. d cắt (P) \(\Leftrightarrow\) (1) có 2 nghiệm phân biệt
\(\Leftrightarrow\Delta'=m^2+m-3>0\Rightarrow\left[{}\begin{matrix}m>\dfrac{-1+\sqrt{13}}{2}\\m< \dfrac{-1-\sqrt{13}}{2}\end{matrix}\right.\)
b. d tiếp xúc (P) khi (1) có nghiệm kép
\(\Leftrightarrow\Delta'=m^2+m-3=0\Rightarrow m=\dfrac{-1\pm\sqrt{13}}{2}\)
De (P),(d),\(\left(\Delta\right)\),cung giao nhau tai mot diem co hoanh do lon hon mot thi x>1
Hoanh do giao diem la nghiem cua phuong trinh:
x2=x+2 \(\Leftrightarrow\)x2-x-2=0
\(\Delta\)=9
x1=2(tm)
x2=-1(loai)
thay x=2 vao y=x2 ta co: y=(2)2=4
thay x=2,y=4 vao \(\left(\Delta\right):y=\left(2m-3\right)x-1\)
4=(2m-3)2 -1
\(\Leftrightarrow4=4m-7\)
\(\Leftrightarrow m=\frac{11}{4}\)
vay m=11/4 thi (P),(d),\(\left(\Delta\right)\)cung giao nhau tai mot diem co hoanh do >1
a: Thay x=1 và y=5 vào (d), ta được:
2m+2m-3=5
=>4m-3=5
hay m=2
b: Phương trình hoành độ giao điểm là:
\(x^2-2mx-2m+3=0\)
Để(P) tiếp xúc với (d) thì \(\left(-2m\right)^2-4\left(-2m+3\right)=0\)
\(\Leftrightarrow4m^2+8m-12=0\)
\(\Leftrightarrow\left(m+3\right)\left(m-1\right)=0\)
=>m=-3 hoặc m=1