Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(2x^2y\cdot\left(-2.5x^3y^2z\right)\)
\(=\left(-2.5\cdot2\right)\cdot\left(x^2\cdot x^3\right)\cdot\left(y\cdot y^3\right)\cdot z\)
\(=-5x^5y^4z\)
Bài 1 :
Ta có : a thuộc góc phần tư thứ II .
=> Cos a < 0
- Ta lại có : \(\left\{{}\begin{matrix}sina=\dfrac{1}{3}\\sin^2a+cos^2a=1\end{matrix}\right.\)
\(\Rightarrow cosa=\sqrt{1-\left(\dfrac{1}{3}\right)^2}=-\dfrac{2\sqrt{2}}{3}\)
Bài 2 :
Ta có : \(F=\dfrac{\cos x.\tan x}{\sin^2x-\cot x.\cos x}=\dfrac{\cos x.\dfrac{\sin x}{\cos x}}{\sin^2x-\dfrac{\cos x}{\sin x}.\cos x}\)
\(=\dfrac{\sin x}{\sin^2x-\dfrac{\cos^2x}{\sin x}}=\dfrac{1}{\sin x-\cot^2x}\)
Áp dụng bđt AM - GM:
\(T=\dfrac{a+b+c}{\sqrt[3]{abc}}+\dfrac{\sqrt[3]{abc}}{a+b+c}=\left(\dfrac{1}{9}\dfrac{a+b+c}{\sqrt[3]{abc}}+\dfrac{\sqrt[3]{abc}}{a+b+c}\right)+\dfrac{8}{9}\dfrac{a+b+c}{\sqrt[3]{abc}}\ge2\sqrt{\dfrac{1}{9}}+\dfrac{8}{9}.3=\dfrac{2}{3}+\dfrac{8}{3}=\dfrac{10}{3}\).
Đẳng thức xảy ra khi a = b = c.
Vậy Min T = \(\dfrac{10}{3}\) khi a = b = c.
a) Ta có: \(12x^5y^2\cdot\left(-12.5zx^2y^5z\right)\)
\(=\left(-12.5\cdot12\right)\cdot\left(x^5\cdot x^2\right)\cdot\left(y^2\cdot y^5\right)\cdot z^2\)
\(=-150x^7y^7z^2\)