K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
22 tháng 9 2020

Lời giải:

Gọi $M(x,y)\in \Delta$ thì $M'(x', y')\in \Delta'$ thỏa mãn:

\(T_{\overrightarrow{u}}M'=M\)

\(\Leftrightarrow \overrightarrow{M'M}=\overrightarrow{u}\)

\(\Leftrightarrow (x-x', y-y')=(-4,1)\Leftrightarrow x=x'-4; y=y'+1\)

Thay vào PT $\Delta$:

$x'-4+1=2(y'+1)$

$\Leftrightarrow x'-2y'-5=0$

Đây chính là ptđt $\Delta'$

28 tháng 4 2021

\(y=x^3-3x^2+2x+2\Rightarrow y'=3x^2-6x+2\)

Vi \(\Delta\perp d:y=x-3\Rightarrow y'=-1\Leftrightarrow3x^2-6x+2=-1\)

\(\Rightarrow x=1\Rightarrow y=1-3+2+2=2\)

\(\Rightarrow\Delta:y=-1\left(x-1\right)+2\)

NV
31 tháng 7 2021

Gọi M là 1 điểm thuộc denta và M' là ảnh của M

\(\left\{{}\begin{matrix}x'=x-4\\y'=y+2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=x'+4\\y=y'-2\end{matrix}\right.\)

Thế vào pt denta:

\(2\left(x'+4\right)-\left(y'-2\right)-5=0\Leftrightarrow2x'-y'+5=0\)

Vậy đường thẳng đó là \(2x-y+5=0\)

2 tháng 8 2021

Khó

 

NV
11 tháng 9 2021

Đường thẳng \(x-1=0\Leftrightarrow x=1\) (có nghĩa: hoành độ của mọi điểm trên đường thẳng denta đều bằng 1, còn tung độ tùy thích. Lấy tung độ y bằng 0, 1, 2, ... 1000 đều được).

Tương tự với điểm trên đường thẳng dạng \(y+3=0\) chẳng hạn thì chỉ cần \(y=-3\) còn thích lấy x bao nhiêu tùy thích)

Câu 2 :Cho đường tròn ( C ) : ( x + 1 )2 + ( y – 2 )2 = 9 . Phép tịnh tiến theo vecto v = ( 1; -2 ) biến đường tròn ( C ) thành đường tròn C’ ( I’;R’) Câu 3: Cho đường tròn ( C ): x2 + y2 – 2x – 8 = 0 . V(0;-2) ( C ) = ( C’ ) . Tính diện tích hình tròn ( C’) Câu 4 : Trong mặt phẳng Oxy , cho tam giác ABC có A( 1;-2) , B(-1;6) , C( -6;2) . Phép vị tự tâm O tỉ số k=-1/2 biến tam giác ABC thành tam giác A’B’C’ . Tìm...
Đọc tiếp

Câu 2 :Cho đường tròn ( C ) : ( x + 1 )2 + ( y – 2 )2 = 9 . Phép tịnh tiến theo vecto v = ( 1; -2 ) biến đường tròn ( C ) thành đường tròn C’ ( I’;R’)

Câu 3: Cho đường tròn ( C ): x2 + y2 – 2x – 8 = 0 . V(0;-2) ( C ) = ( C’ ) . Tính diện tích hình tròn ( C’)

Câu 4 : Trong mặt phẳng Oxy , cho tam giác ABC có A( 1;-2) , B(-1;6) , C( -6;2) . Phép vị tự tâm O tỉ số k=-1/2 biến tam giác ABC thành tam giác A’B’C’ . Tìm trọng tâm của tam giác ABC

Câu 5 : Trong mặt phẳng Oxy , cho hai đường thẳng d : x-3y+3=0 và d’: x-3y+6=0 . Tìm tọa độ vecto v có phương vuông góc với d để Tv(d) = d’

Câu 6 : cho đường thẳng d : 2x-3y+1=0 . Xét Q(0;90) (d) =d’ . Tìm vecto chỉ phương u của đường thẳng d’

Câu 7 : Cho phép vị tự tâm A tỉ số k=2 biến điểm M thành M’

Câu 8 : Trong mặt phẳng Oxy, cho A ( 1;5) , B(3;3) . Phép đồng dạng tỉ số k=1/2 biến A thành A’ biến điểm B thành B’ . Tính độ dài A’B’

Câu 9 :Cho đường tròn ( C ) : x2+(y-1)2=8 . Tìm Ảnh của ( C ) qua phép tâm quay tâm O góc -90 độ

Câu 10: Cho đường thẳng denta : x-2y+3=0 và vecto u =(2;-1) .Tu(denta)=(denta’)

1

Câu 2: 

\(\left(x+1\right)^2+\left(y-2\right)^2=9\)

=>R=3 và I(-1;2)

Tọa độ I' là:

x=-1+1=0 và y=2-2=0

=>Phương trình (C') là: x^2+y^2=9

Câu 3: 

\(V_{\left(O;-2\right)}\left(C\right)=\left(C'\right)\)

\(x^2+y^2-2x-8=0\)

=>x^2-2x+1+y^2=9

=>(x-1)^2+y^2=9

=>R=3 và I(1;0)

Tọa độ I' là:

\(\left\{{}\begin{matrix}x=1\cdot\left(-2\right)=-2\\y=0\cdot\left(-2\right)=0\end{matrix}\right.\)

Độ dài R' là:

\(R=3\cdot\left|-2\right|=6\)

Tọa độ (C') là:

\(\left(x+2\right)^2+y^2=36\)

18 tháng 11 2019

Đường thẳng d thành đường thẳng d’ có phương trình được xác định bằng cách: Mỗi điểm M(x;y) ∈ d' là ảnh của 1 điểm M0(x0;y0) thuộc d qua phép tịnh tiến theo vecto u=(2;3), ta có:

\(\left\{{}\begin{matrix}M_0\left(x_0;y_0\right)\in d\\\overrightarrow{M_0M}=\overrightarrow{u}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0-2y_0+2=0\\x_0 =x-2\\y_0=y-3\end{matrix}\right.\)

\(\Rightarrow\left(x-2\right)-2\left(y-3\right)+2=0\Leftrightarrow x-2y+6=0\)

Đây là phương trình của d'

18 tháng 11 2019
https://i.imgur.com/gQSjk9l.jpg
AH
Akai Haruma
Giáo viên
24 tháng 7 2020

Lời giải:

Xét $A(x,y)\in d$ và $M'(x',y')=T_{\overrightarrow{v}}$. Ta có:

\(\left\{\begin{matrix} x'-x=-2\\ y'-y=5\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=x'+2\\ y=y'-5\end{matrix}\right.\)

Thay vào $(d)$:

$x'+2+y'-5+3=0$

$\Leftrightarrow x'+y'=0$ (đây là ptđt $d'$ cần tìm)