\(\Delta ABC\)vuông tại A. Kẻ AH \(\perp\)BC tại H. CM...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2020

Tham khảo: Câu hỏi của Lee Linh 

14 tháng 7 2017

A B C I K H D E / / // //

a) Xét \(\Delta ABD\)\(\Delta ACE\) có:

\(\widehat{A}\) (chung)

AB = AC (\(\Delta ABC\) cân tại A)

\(\widehat{ADB}=\widehat{AEC}=90^0\)

Do đó: \(\Delta ABD=\Delta ACE\left(ch-gn\right)\)

=> BD = CE (hai cạnh tương ứng)

b) Vì \(\Delta ABD=\Delta ACE\left(cmt\right)\)

=> \(\widehat{ABD}=\widehat{ACE}\) (hai góc tương ứng)

=> AE = AD (hai cạnh tương ứng)

mà AB = AC

mà AE + EB = AB

AD + DC =AC

=> EB = DC

Xét \(\Delta EHB\)\(\Delta DHC\) có:

\(\widehat{BEH}=\widehat{CDH}=90^0\)

EB = DC (cmt)

\(\widehat{EBH}=\widehat{DCH}\left(\widehat{ABH}=\widehat{ACE}\right)\)

Do đó: \(\Delta EHB=\Delta DHC\left(c-g-c\right)\)

=> BH = CH (hai cạnh tương ứng)

=> \(\Delta BHC\) cân tại H

c) Vì CE \(\perp\) AB

=> CE là đường trung trực \(\Delta ABC\)

Vì BD \(\perp\) AC

=> BD là đường trung trực \(\Delta ABC\)

mà CE và BD cắt nhau tại H

=> H là trực tâm

gọi I là giao điểm của AH và BC

=> AI là đường trung trực cạnh BC

hay AH là đường trung trực cạnh BC

d) Xét \(\Delta BDC\)\(\Delta KDC\)có:

DC (chung)

\(\widehat{BDC}=\widehat{KDC}=90^0\)

BD = KD (D là trung điểm cạnh BC )

Do đó: \(\Delta BDC=\Delta KDC\left(c-g-c\right)\)

=> \(\widehat{DBC}=\widehat{DKC}\) (hai góc tương ứng) (1)

\(\Delta BHC\) cân tại H

=> \(\widehat{HBC}=\widehat{HCB}\)

hay \(\widehat{DBC}=\widehat{ECB}\) (2)

(1; (2) => \(\widehat{ECB}=\widehat{DKC}\) (đpcm)

20 tháng 1 2018

Hay quá em ơi!!! yeu

4 tháng 2 2018

a) xét \(\Delta MBE\)vuông tại E và \(\Delta HBE\)

có \(EM=EH\left(gt\right)\)

BE là cạnh chung

\(\Rightarrow\Delta MBE=\Delta HBE\left(ch-cgv\right)\)

\(\Rightarrow\widehat{MBE}=\widehat{HBE}\)( 2 góc tương ứng)

xét \(\Delta MAE\)VUÔNG TẠI E và \(\Delta HAE\)VUÔNG TẠI E

CÓ EM=EH (gt)

AE LÀ CẠNH CHUNG

\(\Rightarrow\Delta MAE=\Delta HAE\left(ch-cgv\right)\)

\(\Rightarrow\widehat{MAE}=\widehat{HAE}\)(2 GÓC TƯƠNG ỨNG)

XÉT \(\Delta ABM\)VÀ \(\Delta ABH\)

CÓ \(\widehat{MBE}=\widehat{HBE}\left(cmt\right)\)

AB LÀ CẠNH CHUNG

\(\widehat{MAE}=\widehat{HAE}\left(cmt\right)\)

\(\Rightarrow\Delta ABM=\Delta ABH\left(g-c-g\right)\)

MÀ TAM GIÁC ABH VUÔNG TẠI H

=> TAM GIÁC ABM VUÔNG TẠI M

=> \(AM\perp BM\)( ĐỊNH LÍ)

B) TA CÓ \(AC\perp AB\)

             \(HE\perp AB\)

\(\Rightarrow AC//HE\)(ĐỊNH LÍ)

\(\Rightarrow\widehat{EHA}=\widehat{HAF}\left(SLT\right)\)

XÉT \(\Delta EHA\)VUÔNG TẠI E VÀ \(\Delta FAH\)VUÔNG TẠI F

CÓ \(\widehat{EHA}=\widehat{HAF}\left(cmt\right)\)

HA LÀ CẠNH CHUNG

\(\Rightarrow\Delta EHA=\Delta FAH\left(ch-gn\right)\)

=> EA = FH (2 CẠNH TƯƠNG ỨNG)

XÉT \(\Delta EAH\)VUÔNG TẠI E VÀ \(\Delta HFE\)VUÔNG TẠI H

CÓ EA= FH (cmt)

EH LÀ CẠNH CHUNG

\(\Rightarrow\Delta EAH=\Delta HFE\left(cgv-cgv\right)\)

=> AH = EF (2 CẠNH TƯƠNG ỨNG)

CHÚC BN HỌC TỐT!!!!!!!!!!

5 tháng 5 2018

Hình ảnh bạn tự vẽ nhé!

a/ Tam giác ADI vuông tại I và tam giác ADI vuông tại I có:

ID = IH ( vì I là trung điểm của HD)

IA là cạnh chung

=> \(\Delta ADI=\Delta AHI\)( hai cạnh góc vuông)

b/ Tam giác ADB và tam giác AHB có:
AD = AH ( tam giác ADI = tam giác AHI)

\(\widehat{DAI}\) = \(\widehat{HAI}\)( vì tam giác ADI = tam giác AHI)

BA là cạnh chung.

=> Tam giác ADB = tam giác AHB ( c.g.c)

=> D = H = 90 độ

=> AD\(\perp\)BD tại D

1/ Cho \(\Delta ABC\) đường cao AH. Trên nửa mặt phẳng chứa điểm A bờ là BC lấy các điểm D và E sao cho BD\(\perp\)BA, BD = BA, CE\(\perp\)CA, CE = CA. CMR các đường thảng AH, CE, BD đồng quy.2/ Cho tam giác nhọn ABC, H là trực tâm, G là trọng tâm, O là điểm cách đều 3 đỉnh của \(\Delta ABC\). CMR H, G, O thẳng hàng; HG=2GO.3/ Cho tam giác nhọn ABC. H là trực tâm:CMR: a) HA+HB+HC<AB+AC           b)...
Đọc tiếp

1/ Cho \(\Delta ABC\) đường cao AH. Trên nửa mặt phẳng chứa điểm A bờ là BC lấy các điểm D và E sao cho BD\(\perp\)BA, BD = BA, CE\(\perp\)CA, CE = CA. CMR các đường thảng AH, CE, BD đồng quy.

2/ Cho tam giác nhọn ABC, H là trực tâm, G là trọng tâm, O là điểm cách đều 3 đỉnh của \(\Delta ABC\). CMR H, G, O thẳng hàng; HG=2GO.

3/ Cho tam giác nhọn ABC. H là trực tâm:

CMR: a) HA+HB+HC<AB+AC

           b) HA+HB+HC<\(\frac{2}{3}\)(AB+BC+CA)

4/ Cho \(\Delta ABC\) vuông tại A. Gọi I là giao điểm của các đường phân giác ABC. Vẽ \(ID\perp AB\) tại D. CMR AB+AC-BC=2ID

5/ Cho \(\Delta ABC\) vuông tại A. AH là đường cao. Gọi I,K,S lần lượt là giao điểm các đường phân giác của \(\Delta ABC\)\(\Delta ABH\)\(\Delta ACH\). Vẽ \(II'\perp BC\) tại I', \(KK'\perp BC\) tại K', \(SS'\perp BC\) tại S'. CMR: SS'+II'+KK'=HA

0