K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2020

Lật ngược lại:

\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{zx}{z+x}\)

\(\Leftrightarrow\frac{x+y}{xy}=\frac{y+z}{yz}=\frac{z+x}{zx}\)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{y}+\frac{1}{z}=\frac{1}{z}+\frac{1}{x}\)

\(\Rightarrow x=y=z\left(ez-see!\right)\)

\(\Rightarrow x-z=0\)

Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=ak\\y=bk\\z=ck\end{matrix}\right.\)

Ta có: \(H=\frac{xyz\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

\(=\frac{ak\cdot bk\cdot ck\cdot\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc\cdot\left(ak+bk\right)\cdot\left(bk+ck\right)\cdot\left(ck+ak\right)}\)

\(=\frac{k^3\cdot abc\cdot\left(a+b\right)\left(b+c\right)\left(c+a\right)}{k^3\cdot abc\cdot\left(a+b\right)\left(b+c\right)\left(c+a\right)}=1\)

Vậy: H=1

20 tháng 8 2020

đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\Leftrightarrow\left\{{}\begin{matrix}x=ak\\y=bk\\z=ck\end{matrix}\right.\)

theo giả thiết ta có \(H=\frac{xyz\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

thay \(H=\frac{ak.bk.ck\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc\left(ak+bk\right)\left(bk+ck\right)\left(ck+ak\right)}\)

\(\Leftrightarrow H=\frac{k^3abc\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc\left[k\left(a+b\right)\right]\left[k\left(b+c\right)\right]\left[k\left(c+a\right)\right]}\)

\(\Leftrightarrow H=\frac{k^3abc\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc.k\left(a+b\right).k\left(b+c\right).k\left(c+a\right)}\)

\(\Leftrightarrow H=\frac{k^3abc\left(a+b\right)\left(b+c\right)\left(c+a\right)}{k^3abc\left(a+b\right)\left(b+c\right)\left(c+a\right)}=1\)

Vậy H = 1

7 tháng 2 2019

Nhanh k cho nè

7 tháng 2 2019

làm lần lượt nhá,dài dòng quá khó coi.ahihihi!

\(\frac{1-\frac{1}{\sqrt{49}}+\frac{1}{49}-\frac{1}{7\left(\sqrt{7}\right)^2}}{\frac{\sqrt{64}}{2}-\frac{4}{7}+\left(\frac{2}{7}\right)^2-\frac{4}{343}}=\frac{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}{4-\frac{4}{7}+\frac{4}{49}-\frac{4}{343}}\)

\(=\frac{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}{4\left(1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}\right)}=\frac{1}{4}\)

4 tháng 8 2020

Bạn tham khảo câu trả lời của anh Phan Thanh Tịnh nhé 

vô phần thống kê hỏi đáp của mình để coi hình nhéolmm

5 tháng 8 2020

\(\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-xz\right)}\)

\(\Leftrightarrow\left(x^2-yz\right)\left(y-xyz\right)=\left(y^2-xz\right)\left(x-xyz\right)\)

\(\Leftrightarrow x^2y-x^3yz-y^2z+xy^2z^2-xy^2+xy^3z+x^2z-x^2yz^2=0\)

\(\Leftrightarrow xy\left(x-y\right)-xyz\left(x^2-y^2\right)+z\left(x^2-y^2\right)-xyz^2\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left[xy-xyz\left(x+y\right)+z\left(x+y\right)-xyz^2\right]=0\)

\(\Leftrightarrow xy-xyz\left(x+y\right)+z\left(x+y\right)-xyz^2=0\left(x\ne y\Rightarrow x-y\ne0\right)\)

\(\Leftrightarrow xy+yz+xz=xyz\left(x+y\right)+xyz^2\)

\(\Leftrightarrow\frac{ay+yz+xz}{xyz}=\frac{xyz\left(x+y\right)+xyz^2}{xyz}\left(xyz\ne0\right)\)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=x+y+z\)

18 tháng 7 2017

mk không hiểu

27 tháng 10 2020

đề đúng mà bn

18 tháng 3 2020

áp dụng t/c dãy tỉ số = nhau ta đc

\(+)\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}=x+y+z\)(do a+b+c=1)

=> \(x+y+z=\frac{x}{a}\Leftrightarrow\left(x+y+z\right)^2=\frac{x^2}{a^2}\left(1\right)\)

+) \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=>\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=x^2+y^2+z^2\)(do a^2 +b^2 +c^2 =1)

\(\Leftrightarrow x^2+y^2+z^2=\frac{x^2}{a^2}\left(2\right)\)

từ (1) zà (2)

=>\(\left(x+y+z\right)^2=x^2+y^2+z^2\left(dpcm\right)\)

Có \(a+b+c=a^2+b^2+c^2=1\) và \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\left(a;b;c\ne0\right)\left(1\right)\)

\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\left(\frac{x}{a}\right)^2=\left(\frac{y}{b}\right)^2=\left(\frac{z}{c}\right)^2=\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}\left(2\right)\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có :

\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}=\frac{\left(x+y+z\right)^2}{\left(a+b+c\right)^2}\). Theo \(\left(1\right)\)

\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\). Theo \(\left(2\right)\)

Có  \(a+b+c=a^2+b^2+c^2=1\Leftrightarrow\left(a+b+c\right)^2=1^2=1\)

Từ các đẳng thức trên, ta suy ra : \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}=\frac{\left(x+y+z\right)^2}{\left(a+b+c\right)^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\)

\(=\frac{x+y+z}{1}=\frac{\left(x+y+z\right)^2}{1}=\frac{x^2+y^2+z^2}{1}\Leftrightarrow1\left(x+y+z\right)^2=1\left(x^2+y^2+z^2\right)\)

\(\Leftrightarrow\left(x+y+z\right)^2=x^2+y^2+z^2\Leftrightarrowđpcm\)

12 tháng 11 2016

xin lỗi, chỉ có 1 trg hợp thôi

 

13 tháng 11 2016

hình như bạn chép sai đề thì phải

8 tháng 3 2016

bang 8;x,y,z deu bang 1 het