Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
SỬA ĐỀ: "Chứng minh: \(\dfrac{S_{MNP}}{S_{ABC}}=\dfrac{MN.MP}{AB.AC}\)
Nếu bài này lớp 8 và đề như vậy theo mình không làm được vì:
Chưa học sin cos tan.....
Nếu c/m bằng tam giác đồng dạng thì thiếu dữ kiện
2) Giải phương trình:
\(\frac{2-x}{2017}-1=\frac{1-x}{2018}-\frac{x}{2019}\)
<=> \(\left(\frac{2-x}{2017}-\frac{1-x}{2018}\right)+\left(\frac{x}{2019}-1\right)=0\)
<=> \(\frac{2019-x}{2017.2018}+\frac{x-2019}{2019}=0\)
<=> \(\left(x-2019\right)\left(\frac{1}{2019}-\frac{1}{2017.2018}\right)=0\)
<=> x - 2019 = 0
<=> x = 2019
A B C M N P H K
Kẻ \(BH⊥AC;NK⊥MP\)
Khi đó ta thấy ngay \(\Delta MNK\sim\Delta ABH\left(g-g\right)\Rightarrow\frac{NK}{BH}=\frac{MN}{AB}\)
Lại có \(\frac{S_{MNP}}{S_{ABC}}=\frac{\frac{1}{2}.MP.NK}{\frac{1}{2}.AC.BH}=\frac{NK}{BH}.\frac{MP}{AC}=\frac{MN}{AB}.\frac{MP}{AC}=\frac{MN.MP}{AB.AC}\left(đpcm\right)\)
A, Có : góc HBA = góc ABC ( chung 1 góc )
=> tam giác HBA đông dạng với tam giác ABC ( g.g)
B, câu (A) => HA/AC = BA/BC
=> AB.AC = AH.BC
Tk mk nha