Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M N I a b
a.Tam giác ABC có AB=AC vậy tâm giác ABC là tam giác cân
Vậy xét tam giác AMB và AMC có AB=AC (gt)
góc B=góc C ( tam giác cân)
BM=CM (gt)
Vậy tam giác AMB=tam giác AMC (c.g.c)
b.
Vì tam giác AMB= tam giác AMC nên góc AMC= góc AMB mà AMB + AMC = 180 ( kề bù)
Vậy suy ra AMB=AMC=90 độ vậy AM vuông góc BC
Ta có AM vuông góc BC
AM vuông góc a
Vậy BC//a
c.
Ta có góc NAC=góc ACM( AN//MC)
AC chung
góc NCA= góc MAC ( AM// NC)
Vậy tam giác AMC= tam giác CNA (g.c.g)
Trả lời:
P/s: Học kém Hình nên chỉ đucợ mỗi câu a
a, +Xét tam giác ABM và ACM có:
AB=AC(Giả thiết) --
AM là cạnh chung) I =>tam giác ABM=ACM (C-C-C)
~Học tốt!~
a) Vì D là điểm đối xứng với A qua \(M\left(gt\right)\)
=> M là trung điểm của \(AD.\)
=> \(AM=DM.\)
Xét 2 \(\Delta\) \(AMB\) và \(DMC\) có:
\(AM=DM\left(cmt\right)\)
\(\widehat{AMB}=\widehat{DMC}\) (vì 2 góc đối đỉnh)
\(MB=MC\) (vì M là trung điểm của \(BC\))
=> \(\Delta AMB=\Delta DMC\left(c-g-c\right).\)
b) Theo câu a) ta có \(\Delta AMB=\Delta DMC.\)
=> \(\widehat{ABM}=\widehat{DCM}\) (2 góc tương ứng).
Mà 2 góc này nằm ở vị trí so le trong.
=> \(AB\) // \(CD.\)
c) Theo câu a) ta có \(\Delta AMB=\Delta DMC.\)
=> \(AB=DC\) (2 cạnh tương ứng).
Lại có: \(\widehat{ABM}=\widehat{DCM}\left(cmt\right)\)
=> \(\widehat{ABC}=\widehat{DCB}.\)
Xét 2 \(\Delta\) \(ABC\) và \(DCB\) có:
\(AB=DC\left(cmt\right)\)
\(\widehat{ABC}=\widehat{DCB}\left(cmt\right)\)
Cạnh BC chung
=> \(\Delta ABC=\Delta DCB\left(c-g-c\right)\) (1).
=> \(\widehat{ACB}=\widehat{DBC}\) (2 góc tương ứng).
Mà 2 góc này nằm ở vị trí so le trong.
=> \(AC\) // \(BD.\)
Từ (1) => \(\widehat{BAC}=\widehat{CDB}\) (2 góc tương ứng).
Mà \(\widehat{BAC}=90^0\left(gt\right)\)
=> \(\widehat{CDB}=90^0.\)
=> \(CD\perp BD.\)
Mà \(AC\) // \(BD\left(cmt\right)\)
=> \(AC\perp CD.\)
d) Có 2 cách:
Cách 1:
Ta có: \(AC\perp CD\left(cmt\right)\)
=> \(\widehat{DCA}=90^0.\)
Mà \(\widehat{BAC}=90^0\left(gt\right).\)
=> \(\widehat{BAC}=\widehat{DCA}=90^0.\)
Xét 2 \(\Delta\) vuông \(ABC\) và \(CDA\) có:
\(\widehat{BAC}=\widehat{DCA}=90^0\)
\(AB=CD\left(cmt\right)\)
Cạnh AC chung
=> \(\Delta ABC=\Delta CDA\) (cạnh huyền - cạnh góc vuông).
Cách 2:
Vì \(AB\) // \(CD\left(cmt\right)\)
=> \(\widehat{ABC}=\widehat{CDA}\) (vì 2 góc so le trong).
Xét 2 \(\Delta\) \(ABC\) và \(CDA\) có:
\(AB=CD\left(cmt\right)\)
\(\widehat{ABC}=\widehat{CDA}\left(cmt\right)\)
Cạnh AC chung
=> \(\Delta ABC=\Delta CDA\left(c-g-c\right).\)
e) Theo câu d) ta có \(\Delta ABC=\Delta CDA.\)
=> \(BC=AD\) (2 cạnh tương ứng).
Ta có: M là trung điểm của \(AD\left(cmt\right)\)
=> \(AM=\frac{1}{2}AD\) (tính chất trung điểm).
Mà \(AD=BC\left(cmt\right)\)
=> \(AM=\frac{1}{2}BC\left(đpcm\right).\)
Chúc bạn học tốt!
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
A B C M
a)Xét tam giác AMB và tam giác AMC có:
AM chung
AB=AC(do tam giác ABC cân tại A)
BM=MC(đường trung tuyến AM cắt BC tại M)
=>tam giác AMB = tam giác AMC (c.c.c)
b) tam giác AMB = tam giác AMC => góc AMB=góc AMC (2 góc tương ứng)
mà góc AMB+góc AMC=180o (2 góc kề bù) => góc AMB=góc AMC=90o =>AM vuông góc với BC
c) Có: BM=MC=1/2 BC (đường trung tuyến AM cắt BC tại M) => BM=(1/2).10=5(cm)
Áp dụng định lí Py-ta-go cho tam giác vuông ABM ta được: AM2+BM2=AB2 <=> AM2+52=82
<=>AM2=82-52=64-25=39 <=> AM\(=\sqrt{39}\)
a, Xét \(\Delta ABM\) và \(\Delta ACM\) có:
\(BM=CM\left(M-là-tr.điểm-BC\right)\)
\(\widehat{B_1}=\widehat{C_1}\left(\Delta ABC-cân-tại-A\right)\)
\(AB=AC\left(\Delta ABC-cân-tại-A\right)\)
\(\Rightarrow\Delta ABM=\Delta ACM\left(c-g-c\right)\left(đpcm_1\right)\)
b, Xét \(\Delta ABC\) có:
\(D-là-tr.điểm-của-AB\)
\(E-là-tr.điểm-của-AC\)
\(\Rightarrow DE//BC\)
Mà: \(\widehat{AMB}=\widehat{AMC}=\frac{180^0}{2}=90^0\)
\(\Rightarrow AM\perp BC\)
Từ trên ta có: \(\left\{{}\begin{matrix}AM\perp BC\\DE//BC\end{matrix}\right.\Rightarrow DE\perp AM\left(đpcm_2\right)\)
A B C D I K M 1 2
a)
Xét tam giác AMB và tam giác DMC có:
AM = DM (gt)
AMB = DMC (2 góc đối đỉnh)
MB = MC (M là trung điểm của BC)
=> Tam giác AMB = Tam giác DMC (c.g.c)
b)
=> ABM = DCM (2 góc tương ứng)
mà 2 góc này ở vị trí so le trong
=> AB // DC
c)
Xét tam giác IMA vuông tại I và tam giác KMD vuông tại K có:
IMA = KMD (2 góc đối đỉnh)
MA = MD (gt)
=> Tam giác IMA = Tam giác KMD (cạnh huyền - góc nhọn)
=> IM = KM (2 cạnh tương ứng)
a)Vì M là trung điểm BC (gt)
=> MB = MC
Xét △AMB và △AMC có
AB=AC (gt)
AM : cạnh chung
MB=MC (cmt)
=> △AMB = △AMC (c.c.c)
b) Vì △ABC cân tại A (AB=AC) có AM là trung tuyến
=> AM là đường cao
=> AM ⊥ BC
Cảm ơn bạn ! ^^