Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Xét tứ giác AEMC có
AE//MC
AC//ME
Do đó: AEMC là hình bình hành
Suy ra: Hai đường chéo AM và CE cắt nhau tại trung điểm của mỗi đường(1)
Xét tứ giác ABMD có
AD//BM
AB//MD
Do đó:ABMD là hình bình hành
Suy ra: Hai đường chéo AM và BD cắt nhau tại trung điểm của mỗi đường(2)
Từ (1) và (2) suy ra AM,BD và CE đồng quy
Hình thím tự vẽ
a) Có AD // BM (gt), DM // AB (gt) => DA = BM; DM = AB ( tính chất đoạn chắn) (1)
AE // CM (gt); AC // EM (gt) => AE = CM; AC = EM ( tính chất đoạn chắn) (2)
Từ (1) và (2) => AD + AE = BM + CM
=> DE = BC
Xét \(\Delta ABC\) và \(\Delta MDE\) có:
AB = DM (cmt)
BC = DE (cmt)
AC = EM (cmt)
Do đó, \(\Delta ABC=\Delta\)MDE (c.c.c)
a. dễ thấy hai tứ giác MBAD và MCAE là hình bình hành ( do có hai cặp cạnh đối song song)
do đó
ME =AC và MD=AB, và MB=AD, MC=AE nên BC=MB+MC=AD+AE=DE
nên hai tam giác ABC = MDE theo trường hợp c.c.c
b.do ở câu a ta đã biết c MBAD và MCAE là hình bình hành nên
MA cắt BD tại trung điểm MA
MA cắt CE tại trung điểm MA
do đó ba đường MA,BD,CE cùng đi qua trung điểm AM
Vì AB // DM :
⇒DMAˆ=BAMˆ⇒DMA^=BAM^(2 góc so le trong)
⇒CAMˆ=EMAˆ⇒CAM^=EMA^(2 góc so le trong)
⇒DMAˆ+EMAˆ=CAMˆ+BAMˆ⇔DMEˆ=CABˆ⇒DMA^+EMA^=CAM^+BAM^⇔DME^=CAB^(1)
Vì EM // AC
⇒MECˆ=ACEˆ⇒MEC^=ACE^(2 góc so le trong)
⇒DECˆ=ECMˆ⇒DEC^=ECM^(2 góc so le trong)
⇒MECˆ+DECˆ=ACEˆ+ECMˆ⇔MEDˆ=ACMˆ⇒MEC^+DEC^=ACE^+ECM^⇔MED^=ACM^(2)
\(1,BM//AD\Rightarrow\widehat{BMA}=\widehat{MAD};\widehat{BAM}=\widehat{AMD}\\ \left\{{}\begin{matrix}\widehat{BMA}=\widehat{MAD}\\AM.chung\\\widehat{BAM}=\widehat{AMD}\end{matrix}\right.\Rightarrow\Delta ABM=\Delta MDA\left(g.c.g\right)\\ \Rightarrow AD=BM;MD=AB\\ \)
Chứng minh tương tự, ta được \(\Delta ACM=\Delta MEA\left(g.c.g\right)\)
\(\Rightarrow AE=MC;ME=AC\\ \Rightarrow DE=DA+AE=BM+MC=BC\\ \left\{{}\begin{matrix}DE=BC\\AC=ME\\AB=MD\end{matrix}\right.\Rightarrow\Delta ABC=\Delta MDE\left(c.c.c\right)\)
\(b,\)
\(AE//CM\Rightarrow\widehat{OAE}=\widehat{OMC};\widehat{OEA}=\widehat{OCM}\\ Mà.AE=CM\\ \Rightarrow\Delta OAE=\Delta OMC\left(g.c.g\right)\\ \Rightarrow OA=OM\\ AD//BM\Rightarrow\widehat{OAD}=\widehat{OMB}\\ Mà.AD=BM\\ \Rightarrow\Delta OAD=\Delta OMB\left(c.g.c\right)\\ \Rightarrow\widehat{AOD}=\widehat{MOB}\\ \Rightarrow\widehat{BOD}=\widehat{AOD}+\widehat{AOB}=\widehat{MOB}+\widehat{AOB}=\widehat{AOM}=180^0\\ \Rightarrow B;O;D.thẳng.hàng\)