Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Ta có:
Góc MHP = 90 độ (gt)
=>góc MHP=góc MKH=90độ (đối đỉnh)
=> NK // MP ( góc vuông đố đỉnh)
b, xét tam giác MNQ,ta có: ( thêm góc A thẳng hàng K,A,Q)
NI,MA,QH là 3 đường cao
mà MH giao với QA tại K(gt)
=> K là trực tâm của tam giác MNP
=>KI vuông góc với MQ( t/c 2 dg cao cua tg) (1)
Lại có: NI vuông góc MQ (gt) (2)
Từ (1),(2)=> 3 điểm I,N,K thẳng hàng
TA CÓ TAM GIÁC ABC VUÔNG TẠI B , AD ĐL PYTAGO TA CÓ
\(AB^2+BC^2=AC^2\)
=>\(8^2+15^2=289=>AC^{ }=17\)
=>AC=17 CM
Giải
a) vì m la trung diểm của BC => BM=MC
Xét tam giac BAM va tam giac MAC có:
AB=AC(dề bài cho)
BM=MC(Chung minh tren)
AM la cạnh chung(de bai cho)
=>Tam giác BAM=tam giac MAC(c.c.c)
b)từ trên
=>góc BAM=góc MAC(hai goc tuong ung)
Tia AM nam giua goc BAC (1)
goc BAM=goc MAC(2)
từ (1) va (2)
=>AM la tia phan giac cua goc BAC
c)Còn nữa ......-->
4:
a: Xet ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
góc EAM=góc FAM
=>ΔAEM=ΔAFM
=>AE=AF
c: AE=AF
ME=MF
=>AM là trung trực của EF
mà K nằm trên trung trực của EF
nên A,M,K thẳng hàng
a) Xét Δ AIB và Δ CID:
+ IB = ID (gt).
+ IA = IC (I là trung điểm của AC).
+ ^AIB = ^CID (2 góc đối đỉnh).
=> Δ AIB = Δ CID (c - g - c).
b) Xét tứ giác ABCD có:
+ I là trung điểm của AC (gt).
+ I là trung điểm của BC (IB = ID).
=> Tứ giác ABCD là hình bình hành (dhnb).
=> AD = BC và AD // BC (Tính chất hình bình hành).
c) Xét tứ giác KABC có:
+ E là trung điểm của AB (gt).
+ E là trung điểm của KC (EC = EK).
=> Tứ giác KABC là hình bình hành (dhnb).
=> KA // BC (Tính chất hình bình hành).
Mà AD // BC (cmt).
=> 3 điểm D, A, K thẳng hàng (đpcm).
(Tự vẽ hình nha)
a, Vì MH là trung tuyến
\(\Rightarrow NH=HP=\frac{1}{2}NP\)
Xét\(\Delta MHP\)và\(\Delta KHN\)có:
HP = NH (cmt)
\(\widehat{MHP}=\widehat{KHN}\)(2 góc đối đỉnh)
HM = HK (GT)
Do đó:\(\Delta MHP=\Delta KHN\left(c-g-c\right)\)
\(\Rightarrow\widehat{HMP}=\widehat{HKN}\)(2 góc tương ứng)
\(\Rightarrow PM//KN\)(2 góc bằng nhau ở vị trí so le trong)
Vậy\(PM//KN\)
b, Vì H là trung điểm của MK
\(\Rightarrow\)QH là trung tuyến của \(\Delta MQK\)(1)
Vì\(NH=\frac{1}{2}NP\)
\(NP=NQ\)
\(\Rightarrow NH=\frac{1}{2}NQ\)(2)
Từ (1) và (2) => N là trọng tâm của\(\Delta MQK\)
Mà I là trung điểm của MQ
=> KI là đường trung tuyến
=. I,N,K thẳng hàng
Vậy I,N,K thẳng hàng.
P/s: Bài còn sai sót mong bạn thông cảm.
Linz
Bài 1:
a) Xét ΔABE vuông tại B và ΔAFE vuông tại F có
AE chung
\(\widehat{BAE}=\widehat{FAE}\)(AE là tia phân giác của \(\widehat{BAC}\), F∈AC)
Do đó: ΔABE=ΔAFE(cạnh huyền-góc nhọn)
⇒AB=AF(hai cạnh tương ứng)
Ta có: ΔABE=ΔAFE(cmt)
⇒\(\widehat{BEA}=\widehat{FEA}\)(hai góc tương ứng)
mà tia EA nằm giữa hai tia EB và EF
nên EA là tia phân giác của \(\widehat{BEF}\)(đpcm)
b) Ta có: ΔABE=ΔAFE(cmt)
⇒EB=EF(hai cạnh tương ứng)(1)
Ta có: ΔFEC vuông tại F(EF⊥AC)
nên EC là cạnh huyền trong ΔFEC vuông tại F(EC là cạnh đối diện với \(\widehat{EFC}=90^0\))
⇒EC là cạnh lớn nhất trong ΔFEC(trong tam giác vuông, cạnh huyền là cạnh lớn nhất)
⇒EF<EC(2)
Từ (1) và (2) suy ra EB<EC(đpcm)
Bài 2:
a) Xét ΔMPH và ΔKNH có
MH=KH(gt)
\(\widehat{MHP}=\widehat{KHN}\)(hai góc đối đỉnh)
PH=NH(MH là đường trung tuyến ứng với cạnh NP trong ΔMNP)
Do đó: ΔMPH=ΔKNH(c-g-c)
⇒\(\widehat{MPH}=\widehat{KNH}\)(hai góc tương ứng)
mà \(\widehat{MPH}\) và \(\widehat{KNH}\) là hai góc ở vị trí so le trong
nên MP//KN(dấu hiệu nhận biết hai đường thẳng song song)
b) Xét ΔMQP có
I là trung điểm của QM(gt)
N là trung điểm của QP(gt)
Do đó: IN là đường trung bình của ΔMQP(định nghĩa đường trung bình của tam giác)
⇒IN//MP(định lí 2 về đường trung bình của tam giác)
mà KN//MP(cmt)
và IN và KN có điểm chung là N
nên I,N,K thẳng hàng(tiên đề Ơ Cơ Lít)(đpcm)