K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1:

\(S_8=\dfrac{u_1\cdot\left(1-q^8\right)}{1-q}=\dfrac{2048\cdot\left(1-\left(\dfrac{5}{4}\right)^8\right)}{1-\dfrac{5}{4}}\)

\(=-8192\left(1-\left(\dfrac{5}{4}\right)^8\right)\)

2:

\(u2=u1\cdot q\)

=>\(q=\dfrac{3}{-1}=-3\)

\(S_{10}=\dfrac{u1\left(1-q^{10}\right)}{1-q}=\dfrac{-1\cdot\left(1-\left(-3\right)^{10}\right)}{1-\left(-3\right)}\)

\(=\dfrac{-1}{4}\left(1-3^{10}\right)\)

24 tháng 11 2023

Câu 1:

\(S_8=u_1+u_2+u_3+...+u_8\)

\(=\dfrac{u_1\left(1-q^8\right)}{1-q}=\dfrac{2048\cdot\left(1-\left(\dfrac{5}{4}\right)^8\right)}{1-\dfrac{5}{4}}\)

\(=\dfrac{325089}{8}\)

2: \(S_{10}=u_1+u_2+...+u_9+u_{10}\)

=>\(S_{10}=\dfrac{u_1\left(1-q^{10}\right)}{1-q}=\dfrac{-3\cdot\left(1-\left(\dfrac{1}{2}\right)^{10}\right)}{1-\dfrac{1}{2}}\)

\(=-6\cdot\left(1-\dfrac{1}{2^{10}}\right)=-6+\dfrac{6}{2^{10}}=-\dfrac{3069}{512}\)

1:

\(S_{10}=\dfrac{u_1\cdot\left(1-q^{10}\right)}{1-q}=\dfrac{-3\cdot\left(1-\dfrac{1}{1024}\right)}{1-\dfrac{1}{2}}\)

\(=-6\cdot\dfrac{1023}{1024}=\dfrac{-3069}{512}\)

2:

\(\left\{{}\begin{matrix}u1=6\\u2=18\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}u1=6\\u1\cdot q=18\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}u1=6\\q=3\end{matrix}\right.\)

\(S_{12}=\dfrac{u_1\left(1-q^{12}\right)}{1-q}=\dfrac{6\cdot\left(1-3^{12}\right)}{1-3}=-3\cdot\left(1-3^{12}\right)\)

\(=3^{13}-3\)

2 tháng 10 2023

1, Ta có \(\left\{{}\begin{matrix}u_1=-1\\u_1.q=3\end{matrix}\right.\Rightarrow\dfrac{1}{q}=-\dfrac{1}{3}\Leftrightarrow q=-3\)

\(S_{10}=-1.\dfrac{1-\left(-3\right)^{10}}{1-\left(-3\right)}=14762\)

2, tương tự 

a: u1-2u4+u6=12 và u2+u5=8

=>u1-2u1-6d+u1+5d=12 và u1+d+u1+4d=8

=>d=12 và 2u1+5d=8

=>d=12 và 2u1=8-5d=8-60=-52

=>u1=-26 và d=12

b: u5-u2=3 và u3*u8=24

=>u1+4d-u1-d=3 và (u1+2d)(u1+7d)=24

=>d=1 và (u1+2)(u1+7)=24

=>d=1 và u1^2+9u1-10=0

=>d=1 và (u1=-10 hoặc u1=1)

a: 

ĐKXĐ: \(q\notin\left\{0;1;-1\right\}\)

\(HPT\Leftrightarrow\left\{{}\begin{matrix}u1\cdot q^4-u1=15\\u1\cdot q^3-u1\cdot q=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{q^4-1}{q^3-q}=\dfrac{15}{6}=\dfrac{5}{2}\\u1\left(q^4-1\right)=15\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2q^4-2=5q^3-5q\\u1\left(q^4-1\right)=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2q^4-5q^3+5q-2=0\\u1\left(q^4-1\right)=15\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left(q-2\right)\left(q-1\right)\left(q+1\right)\left(2q-1\right)=0\\u1\left(q^4-1\right)=15\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left[{}\begin{matrix}q=2\\q=\dfrac{1}{2}\end{matrix}\right.\\u1\left(q^4-1\right)=15\end{matrix}\right.\)

TH1: q=2

=>\(u1=\dfrac{15}{2^4-1}=\dfrac{15}{15}=1\)

TH2: q=1/2

=>\(u1=\dfrac{15}{\dfrac{1}{16}-1}=15:\dfrac{-15}{16}=-16\)

b:

 

 \(HPT\Leftrightarrow\left\{{}\begin{matrix}u1-u1\cdot q^2+u1\cdot q^4=65\\u1+u1\cdot q^6=325\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{q^4-q^2+1}{q^6+1}=\dfrac{1}{5}\\u1\left(1+q^6\right)=325\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{1}{q^2+1}=\dfrac{1}{5}\\u1\left(q^6+1\right)=325\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}q^2=4\\u1\left(q^6+1\right)=325\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}q\in\left\{2;-2\right\}\\u1\left(q^6+1\right)=325\end{matrix}\right.\Leftrightarrow u1=\dfrac{325}{65}=5\)

c: \(HPT\Leftrightarrow\left\{{}\begin{matrix}u1\cdot q^3+u1\cdot q^5=-540\\u1\cdot q+u1\cdot q^3=-60\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{q^5+q^3}{q^3+q}=9\\u1\left(q+q^3\right)=-60\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}q^2=9\\u1\left(q+q^3\right)=-60\end{matrix}\right.\)

TH1: q=3

\(u1=-\dfrac{60}{3+3^3}=-\dfrac{60}{30}=-2\)

TH2: q=-3

=>\(u1=-\dfrac{60}{-3-27}=\dfrac{60}{30}=2\)

1: u2=4 và u4=10

=>u1+d=4 và u1+3d=10

=>2d=6 và u1+d=4

=>d=3 và u1=1

\(S_{10}=\dfrac{10\cdot\left(2\cdot1+9\cdot3\right)}{2}=5\cdot\left(2+27\right)=145\)

2: 

u3=6 và u5=16

=>u1+2d=6 và u1+4d=16

=>2d=10  và u1+2d=6

=>d=5 và u1=6-2*5=-4

\(S_{12}=\dfrac{12\cdot\left(2\cdot\left(-4\right)+11\cdot5\right)}{2}=6\cdot\left(-8+55\right)=6\cdot47=282\)