\(x,y\) thỏa mãn \(x^3+y^3=2016\). Chứ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2017

\(P=\sqrt{1-6x+9x^2}+\sqrt{9x^2-12x+4}\)

\(=\sqrt{\left(1-3x\right)^2}+\sqrt{\left(3x-2\right)^2}\)

\(=\left|1-3x\right|+\left|3x-2\right|\ge\left|1-3x+3x-2\right|=1\)

Đẳng thức xảy ra \(\Leftrightarrow\)\(\dfrac{1}{3}\le x\le\dfrac{2}{3}\)

3 tháng 6 2019

Câu 1 bạn dùng chia hết cho 13

Câu 2 bạn cộng cả 2 vế với z^4 rồi dùng chia 8

Câu 3 bạn đặt a^4n là x thì x sẽ chia 5 dư 1 và chia hết cho 4 hoăc chia 4 dư 1

Khi đó ta có x^2+3x-4=(x-1)(x+4)

đến đây thì dễ rồi

Câu 4 bạn xét p=3 p chia 3 dư 1 p chia 3 dư 2 là ra

Câu 6 bạn phân tích biểu thức của đề thành nhân tử có nhân tử x-2

Câu 5 mình nghĩ là kẹp giữa nhưng chưa ra

3 tháng 6 2019

Cảm ơn bạn Ninh Đức Huy.

10 tháng 8 2017

post từng câu một thôi bn nhìn mệt quá

22 tháng 5 2017

7.  \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)

\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)

\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)

Vậy   \(S_{min}=1936\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)

22 tháng 5 2017

8. \(x^2-5x+14-4\sqrt{x+1}=0\)       (ĐK: x > = -1).

\(\Leftrightarrow\)   \(\left(x+1\right)-4\sqrt{x+1}+4+\left(x^2-6x+9\right)=0\)

\(\Leftrightarrow\)   \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2=0\)

Với mọi x thực ta luôn có:   \(\left(\sqrt{x+1}-2\right)^2\ge0\)   và   \(\left(x-3\right)^2\ge0\) 

Suy ra   \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2\ge0\)

Đẳng thức xảy ra   \(\Leftrightarrow\)   \(\hept{\begin{cases}\left(\sqrt{x+1}-2\right)^2=0\\\left(x-3\right)^2=0\end{cases}}\)    \(\Leftrightarrow\)    x = 3 (Nhận)

22 tháng 5 2017

7.  \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)

\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)

\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)

Vậy   \(S_{min}=1936\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)

20 tháng 5 2017

Câu 8 bn tìm cách tách thành   

\(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2=0\)

8 tháng 6 2018

Hì , giải đc rùi nha.

Vì \(x,y\in R\)

\(\Rightarrow\left(x+2\right).\left(y+2\right)=\frac{25}{4}\)

Min \(P=\sqrt{1+x^4}+\sqrt{1+y^4}\)

- Dự đoán \(x=y=\frac{1}{2}\)

- Sử dụng BĐT : \(\frac{x^2}{a}+\frac{y^2}{b}\ge\frac{\left(x+y\right)^2}{a+b}\)    ( Với a,b > 0 )

=>  \(1+x^4=16.\frac{1}{16}+a^4=16.\left(\frac{1}{4}\right)^2+a^2\ge\frac{[16.\frac{1}{4}+a^2]^2}{17}\)

\(=\frac{(a^2+4)^2}{17}\)

=> \(1+y^4\ge\frac{\left(y^2+4\right)^2}{17}\)

=> \(P\ge\frac{x^2+y^2+8}{\sqrt{17}}\)

\(\Leftrightarrow P\sqrt{17}=\frac{1}{5}\left(x^2+y^2\right)+\frac{4}{5}\left(x^2+\frac{1}{4}+y^2+\frac{1}{4}\right)+8-\frac{2}{5}\)

\(\ge\frac{2xy}{5}+\frac{4}{5}\left(x+y\right)+8-\frac{2}{5}=\frac{2}{5}[xy+2\left(x+y\right)]+8-\frac{2}{5}\)

Theo giả thiết \(\left(x+2\right)\left(y+2\right)=\frac{25}{4}\)

\(\Leftrightarrow xy+2\left(x+y\right)=\frac{9}{4}\)

\(\Rightarrow P\sqrt{17}\ge\frac{2}{5}.\frac{9}{4}+8-\frac{2}{5}=\frac{17}{2}\)

\(\Leftrightarrow P\ge\frac{\sqrt{17}}{2}\)

Điểm rơi \(x=y=\frac{1}{2}\)