K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2019

Ta có:\(7\left(\frac{1}{a^2}+...\right)=6\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)+2015\)

Mà \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\le\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)

=> \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\le2015\)=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le\sqrt{6045}\)

\(P=\frac{1}{\sqrt{3\left(2a^2+b^2\right)}}+...\)

Mà \(\left(2+1\right)\left(2a^2+b^2\right)\ge\left(2a+b\right)^2\)(bất dẳng thức buniacoxki)

=> \(P\le\frac{1}{2a+b}+\frac{1}{2b+c}+\frac{1}{2c+a}\)

Lại có \(\frac{1}{2a+b}=\frac{1}{a+a+b}\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}\right)\)

=> \(P\le\frac{1}{9}\left(\frac{3}{a}+\frac{3}{b}+\frac{3}{c}\right)\le\frac{\sqrt{6045}}{3}\)

Vậy \(MaxP=\frac{\sqrt{6045}}{3}\)khi \(a=b=c=\frac{\sqrt{6045}}{2015}\)

6 tháng 5 2020

Áp dụng Bunhia cho bộ số (1;1;1) vfa (a;b;c) ta có 3(a2+b2+c2) >= (a+b+c)2

=> 3(2a2+b2) >=(2a+b2); 3(2b2+c2) >= (2b+c)2; 3(2c2+a2) >= (2c+a)2

=> \(P\le\frac{1}{2a+b}+\frac{1}{2b+c}+\frac{1}{2c+a}\)

Ta có \(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\Rightarrow\frac{1}{9}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge\frac{1}{x+y+z}\)

=> \(P\le\frac{1}{2a+b}+\frac{1}{2b+c}+\frac{1}{2c+b}\le\frac{1}{9}\left[\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}\right)+\left(\frac{1}{b}+\frac{1}{b}+\frac{1}{c}\right)+\left(\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\right)\right]\)

=> \(P\le\frac{1}{9}\left(\frac{3}{a}+\frac{3}{b}+\frac{3}{c}\right)=\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(I\right)\)

Ta có \(10\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)=3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)+6\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)+2015\)

\(=3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2+2015\left(II\right)\)

Áp dụng Bunhia cho bộ số (1;1;1) và \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\)

Ta được \(3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\ge\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)\(\Rightarrow\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\ge\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)

=> \(10\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\ge10\cdot\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\left(III\right)\)

Từ (I)(II)(III) => \(3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2+2015\ge10\cdot\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)

\(\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\le3\cdot2015\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2-3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)

\(\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\sqrt{3\cdot2015}\left(IV\right)\)

Từ (I)(IV) => \(P\le\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\frac{1}{3}\cdot\sqrt{3\cdot2015}=\sqrt{\frac{2015}{3}}\)

Vậy GTNN của P=\(\sqrt{\frac{2015}{3}}\)khi a=b=c và \(7\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)=6\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)+2015\)

=> \(a=b=c=\sqrt{\frac{3}{2015}}\)

6 tháng 5 2020

Identitya,b,c đã dương???

1 tháng 5 2016

Đặt \(\frac{1}{a}=x>0;\frac{1}{b}=y>0;\frac{1}{c}=z>0\)

Từ giả thiết ta có: \(7\left(x^2+y^2+z^2\right)=6\left(xy+yz+zx\right)+2015\le6\left(x^2+y^2+z^2\right)+2015\)

\(\Leftrightarrow x^2+y^2+z^2\le2015\)

Ta có: \(\frac{1}{\sqrt{3\left(2a^2+b^2\right)}}=\frac{1}{\sqrt{\left(4a^2+b^2\right)+\left(2a^2+2b^2\right)}}\le\frac{1}{\sqrt{4a^2+b^2+4ab}}=\frac{1}{2a+b}=\frac{1}{a+a+b}\le\frac{1}{9}\left(\frac{2}{a}+\frac{1}{b}\right)=\frac{1}{9}\left(2x+y\right)\)

Tương tự thì: \(\frac{1}{\sqrt{3\left(2b^2+c^2\right)}}\le\frac{1}{9}\left(2y+z\right)\)  và \(\frac{1}{\sqrt{3\left(2c^2+a^2\right)}}\le\frac{1}{9}\left(2z+x\right)\)

Cộng từng vế 3 BĐT trên ta có: \(\frac{1}{\sqrt{3\left(2a^2+b^2\right)}}+\frac{1}{\sqrt{3\left(2b^2+c^2\right)}}+\frac{1}{\sqrt{3\left(2c^2+a^2\right)}}\le\frac{x+y+z}{3}\le\frac{\sqrt{3\left(x^2+y^2+z^2\right)}}{3}\le\sqrt{\frac{2015}{3}}\)

Vậy max \(P=\sqrt{\frac{2015}{3}}\)  , đạt được khi \(a=b=c=\sqrt{\frac{3}{2015}}\)

18 tháng 8 2016

\(3\left(2a^2+b^2\right)=\left(1^2+1^2+1^2\right)\left(a^2+a^2+b^2\right)\ge\left(a+a+b\right)^2=\left(2a+b\right)^2\)

\(P\le\frac{1}{2a+b}+\frac{1}{2b+c}+\frac{1}{2c+a}\)

\(\frac{1}{2a+b}=\frac{1}{a+a+b}\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}\right)=\frac{1}{9}\left(\frac{2}{a}+\frac{1}{b}\right)\)

\(P\le\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\)

\(gt\rightarrow7\left(x^2+y^2+z^2\right)=6\left(xy+yz+zx\right)+2015\)

\(\Leftrightarrow7\left(x+y+z\right)^2=20\left(xy+yz+zx\right)+2015\)

Ta có: \(3\left(xy+yz+zx\right)\le\left(x+y+z\right)^2\)

\(\Rightarrow7\left(x+y+z\right)^2\le\frac{20}{3}\left(x+y+z\right)^2+2015\)

\(\Leftrightarrow\frac{1}{3}\left(x+y+z\right)^2\le2015\)

\(\Leftrightarrow x+y+z\le\sqrt{6045}\)

\(P\le\frac{1}{3}\left(x+y+z\right)\le\frac{\sqrt{6045}}{3}\)

Dấu bằng xảy ra khi \(x=y=z=\frac{\sqrt{6045}}{3}\)hay \(a=b=c=\left(\frac{\sqrt{6045}}{3}\right)^{-1}\)

NV
20 tháng 6 2020

\(7\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}\right)=20\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=2019\)

\(\Leftrightarrow7\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=20\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)+2019\)

\(\Rightarrow7\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\le\frac{20}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2+2019\)

\(\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\le6057\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le3\sqrt{673}\)

Ta có:

\(\sqrt{\left(2+1\right)\left(2a^2+b^2\right)}\ge\sqrt{\left(2a+b\right)^2}=2a+b\)

\(\Rightarrow\frac{1}{\sqrt{3\left(2a^2+b^2\right)}}\le\frac{1}{2a+b}\le\frac{1}{9}\left(\frac{2}{a}+\frac{1}{b}\right)\)

Tương tự: \(\frac{1}{\sqrt{3\left(2b^2+c^2\right)}}\le\frac{1}{9}\left(\frac{2}{b}+\frac{1}{c}\right)\) ; \(\frac{1}{\sqrt{3\left(2c^2+a^2\right)}}\le\frac{1}{9}\left(\frac{2}{c}+\frac{1}{a}\right)\)

Cộng vế với vế:

\(P\le\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\sqrt{673}\)

\(P_{max}=\sqrt{673}\) khi \(a=b=c=\frac{1}{\sqrt{673}}\)

2 tháng 12 2020

Đặt \(\left(\frac{1}{a},\frac{1}{b},\frac{1}{c}\right)=\left(x,y,z\right)\)

\(x+y+z\ge\frac{x^2+2xy}{2x+y}+\frac{y^2+2yz}{2y+z}+\frac{z^2+2zx}{2z+x}\)

\(\Leftrightarrow x+y+z\ge\frac{3xy}{2x+y}+\frac{3yz}{2y+z}+\frac{3zx}{2z+x}\)

\(\frac{3xy}{2x+y}\le\frac{3}{9}xy\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}\right)=\frac{1}{3}\left(x+2y\right)\)

\(\Rightarrow\Sigma_{cyc}\frac{3xy}{2x+y}\le\frac{1}{3}\left[\left(x+2y\right)+\left(y+2z\right)+\left(z+2x\right)\right]=x+y+z\)

Dấu "=" xảy ra khi x=y=z

17 tháng 11 2017

Ta có:

\(7\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)=6\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)+2017\)

\(\Leftrightarrow7\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=20\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)+2017\le\frac{20}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2+2017\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le\sqrt{6051}\)

Ta lại có:

\(T=\frac{1}{\sqrt{3\left(2a^2+b^2\right)}}+\frac{1}{\sqrt{3\left(2b^2+c^2\right)}}+\frac{1}{\sqrt{3\left(2c^2+a^2\right)}}\)

\(\le\frac{1}{2a+b}+\frac{1}{2b+c}+\frac{1}{2c+a}\)

\(\le\frac{1}{9}\left(\frac{2}{a}+\frac{1}{b}+\frac{2}{b}+\frac{1}{c}+\frac{2}{c}+\frac{1}{a}\right)\)

\(=\frac{1}{9}\left(\frac{3}{a}+\frac{3}{b}+\frac{3}{c}\right)=\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\frac{\sqrt{6051}}{3}\)