K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2016

a(a-b)=0 +b(b-c)+c(c-a)=0 suy ra (a-b)2+(b-c)2+(c-a)2=0 suy ra a=b=c

Thay vào A ta đc min A=\(\frac{17}{4}\) tại a=b=c=\(\frac{1}{2}\)

18 tháng 4 2016

Từ giả thiết => a = 0 hoặc a = b

* TH1: a = 0

 b(b-c)+c(c-a)=0  <=> b(b-c)+c2=0 <=> b2 -bc + c2 =0 <=> \(\left(b-\frac{c}{2}\right)^2+\frac{3c^2}{4}=0\)

Điều này xảy ra khi và chỉ khi b - c/2 =0 và c = 0 => b = c = 0

Vậy a = b = c = 0 => A = 5

* TH2: a = b

 b(b-c)+c(c-a)=0 <=> b(b-c)+c(c-b)=0 <=> b2 - 2bc + c2 =0 <=> (b-c)2 =0=> b = c

Vậy a =b=c => A = a3 + a+a3 - 3a3 + 3a2 - 3a + 5

                          = 3a2 - 3a + 5 = (3a2 - 3a + 3/4) + 17/4 = 3. (a-1/2)2 + 17/4

Để A nhỏ nhất => a -1/2 =0 => a = 1/2 => Amin = 17/4  

17/4 < 5 => Vậy Amin = 17/4 khi a = b = c = 1/2

18 tháng 4 2016

$\frac{17}{4}$174  tại a=b=c=$\frac{1}{2}$

18 tháng 4 2016

=1/2 NHÉ

\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abc\)

Dấu bằng xảy ra \(\Leftrightarrow a=b=c\)

ta có : \(a^3+b^3+c^3=3abc\Rightarrow a=b=c\)

\(\Rightarrow\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=2.2.2=8\)

6 tháng 2 2019

o0o I am a studious person o0o: Theo em thì: \(a^3+b^3+c^3=3abc\Rightarrow a^3+b^3+c^3-3abc=0\)

\(\Rightarrow\orbr{\begin{cases}a=b=c\\a+b+c=0\end{cases}}\) chứ ạ?

\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow\)\(a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\)\(\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)

\(\Leftrightarrow\)\(\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\)\(\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\)\(\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2-3ab\right]=0\)

Do \(a+b+c\ne0\) nên \(\left(a+b\right)^2-c\left(a+b\right)+c^2-3ab=0\)

\(\Leftrightarrow\)\(a^2+b^2+c^2-ab-bc-ca=0\)

\(\Leftrightarrow\)\(2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\)\(\left(a^2-2ab+b^2\right)+\left(b^2-bc+c^2\right)+\left(c^2-ca+a^2\right)=0\)

\(\Leftrightarrow\)\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\)\(\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow a=b=c}\)

\(\Rightarrow\)\(N=\frac{a^2+b^2+c^2}{\left(a+b+c\right)^2}=\frac{3a^2}{\left(3a\right)^2}=\frac{3a^2}{9a^2}=\frac{1}{3}\)

...

2 tháng 12 2018

Cảm ơn bạn nha

18 tháng 9 2019

Câu 1: \(x^2+\frac{1}{x^2}-4x-\frac{4}{x}+6=0\)

\(\Leftrightarrow\left(x^2+\frac{1}{x^2}\right)-4\left(x+\frac{1}{x}\right)+6=0\)

\(\text{Đặt a = }x+\frac{1}{x}\)

\(\Rightarrow a^2=\left(x+\frac{1}{x}\right)^2=x^2+2.x.\frac{1}{x}+\left(\frac{1}{x}\right)^2=x^2+2+\frac{1}{x^2}\)

\(\Rightarrow x^2+\frac{1}{x^2}=a^2-2\)

Thay vào phương trình ta có:

\(\left(a^2-2\right)-4a+6=0\)

\(\Leftrightarrow a^2-2-4a+4=0\)

\(\Leftrightarrow a^2-4a+4=0\)

\(\Leftrightarrow\left(a-2\right)^2=0\)

\(\Leftrightarrow a-2=0\)

\(\Rightarrow x+\frac{1}{x}-2=0\)\(ĐKXĐ:x\ne0\)

\(\Leftrightarrow\frac{x^2+1-2x}{x}=0\)

\(\Leftrightarrow x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

\(\Leftrightarrow x-1=0\)

\(\Leftrightarrow x=1\)
Vậy x=1

18 tháng 9 2019

Xực e lm đúng mà bn em bảo làm sai nữa chứ hmm :)

8 tháng 3 2017

GT không hợp lí 

Theo định lí cosi 3 số

a^3+b^3+c^3>=3*canbacba(a^3*b^3*c^3)

<=> a^3+b^3+c^3>=3abc

dấu"=" khi a=b=c

trái Gt a,b,c đôi một khác nhau

12 tháng 3 2017

Bạn sai rồi. Sao ngu vậy. Giải đến thế mà ko làm ra

1. Tìm số nguyên n sao cho phân thức \(\frac{n+2}{n^2+4}\) có giá trị là số nguyên 2. Cho x + y + z = xy + yz + zx = 0 Tính giá trị của biểu thức B = x100 + y101 + z102 3. Cho các số a, b, c thỏa mãn: a(a - b) + b(b - c) + c(c - a) = 0 Tìm GTNN của biểu thức N = a3 + b3 + c3 - 3abc + 3ab - 3c +5 4. Tìm các số nguyên x, y, z thỏa mãn x - y - z = -3 và x2 - y2 - z2 = 1 5. Cho ba số a, b, c thỏa mãn a2(b - c) + b2(c - a) + c2(a - b) = 0. CMR...
Đọc tiếp

1. Tìm số nguyên n sao cho phân thức \(\frac{n+2}{n^2+4}\) có giá trị là số nguyên
2. Cho x + y + z = xy + yz + zx = 0
Tính giá trị của biểu thức B = x100 + y101 + z102
3. Cho các số a, b, c thỏa mãn: a(a - b) + b(b - c) + c(c - a) = 0
Tìm GTNN của biểu thức N = a3 + b3 + c3 - 3abc + 3ab - 3c +5
4. Tìm các số nguyên x, y, z thỏa mãn x - y - z = -3 và x2 - y2 - z2 = 1
5. Cho ba số a, b, c thỏa mãn a2(b - c) + b2(c - a) + c2(a - b) = 0. CMR trong ba số a, b, c có ít nhất hai số bằng nhau
6. Cho ba số a, b, c khác 0 thỏa mãn đẳng thức \(\frac{a+b-c}{c}=\frac{a+c-b}{b}=\frac{b+c-a}{a}\)
Tính giá trị của biểu thức: P = \(\frac{\left(a+b\right)\left(b+c\right)\left(a+c\right)}{abc}\)
7. Cho a + b = S và ab = P. Hãy biểu diễn theo S và P, các biểu thức sau đây:
a) A = a2 + b2
b) B = a3 + b3
c) C = a4 + b4
8. CMR:
a) a2 ( a + 1) + 2a ( a + 1) chia hết cho 6 với a thuộc Z
b) x2 + 2x + 2 > 0 với x thuộc Z
c) -x2 + 4x - 5 < 0 với x thuộc Z
9. Tìm GTLN của E = -x2 + 2xy - 4y2 + 2x + 10y - 3
10. Tìm các số nguyên x, y thỏa mãn 10x2 + 20y2 + 24xy + 8x -24y + 51 \(\le\) 0
11. Tìm giá trị nguyên của x, y trong đẳng thức: 2x3 + xy = 7
12. Tìm GTNN của biểu thức P =x4 + 2x3 + 3x2 + 2x + 1

0
9 tháng 5 2019

Ta có:a2+b2+c2\(\ge\)-ab-bc-ac

Thật vậy:

a2+b2\(\ge\)-2ab

b2+c2\(\ge\)-2bc

a2+c2\(\ge\)-2ac

Cộng vế theo vế, ta được:2(a2+b2+c2)\(\ge\)-2ab-2ac-2bc=>a2+b2+c2\(\ge\)-ab-bc-ac

M=a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-ac-bc)\(\ge\)2(a+b+c)

Lại có:2(a+b+c)\(\ge\)-a2-b2-c2-3

Suy ra:M\(\ge\)-a2-b2-c2-3=-4

Vậy GTNN của M=-4

9 tháng 5 2019

L​ê Hồ Trọng Tín ​  \(2\left(a+b+c\right)\ge-a^2-b^2-c^2-3\) Đẳng thức xảy ra khi a=b=c=-1 thay vào M không ra -4 nha, bài làm sai rồi

23 tháng 10 2016

Sưả câu 2. a2+b2+c2=3abc