K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2017

2/ Đặt \(A=\frac{1}{7^2}-\frac{1}{7^4}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}\)

\(\Rightarrow\frac{A}{7^2}=\frac{1}{7^4}-\frac{1}{7^6}+...+\frac{1}{7^{100}}-\frac{1}{7^{102}}\)

\(\Rightarrow A+\frac{A}{7^2}=\left(\frac{1}{7^2}-\frac{1}{7^4}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}\right)+\left(\frac{1}{7^4}-\frac{1}{7^6}+...+\frac{1}{7^{100}}-\frac{1}{7^{102}}\right)\)

\(\Leftrightarrow\frac{50A}{49}=\frac{1}{7^2}-\frac{1}{7^{102}}< \frac{1}{7^2}=\frac{1}{49}\)

\(\Leftrightarrow A< \frac{1}{50}\)

21 tháng 1 2017

1/ Với x là số lẻ thì: x = 2k + 1

\(\Rightarrow M\left(x\right)=x^2-x-2=\left(2k+1\right)^2-\left(2k+1\right)-2=4k^2+2k-2\)

Là 1 số chẵn khác 2 nên M(x) không phải là số nguyên tố

Với x là số chẵn thì: x = 2k

\(\Rightarrow M\left(x\right)=x^2-x-2=4k^2-2k-2\) là số chẵn khác 2 nên M(x) không phải là số nguyên tố.

Vậy không tồn tại x nguyên để M(x) là số nguyên tố

2 tháng 6 2022

Không mất tính tổng quát giả sử a >= b. 

Đặt a^2 + 3b = x^2 (x thuộc N) và b^2 + 3a = y^2 (y thuộc N)

Ta có : x^2 = a^2 + 3b <= a^2 + 3a < a^2 + 4a + 4 = (a+2)^2  (Do a thuộc N)

=> x^2 < (a+2)^2     (1)

Lại có : x^2 = a^2 + 3b >=  a^2  (Do b thuộc N)

=> x^2 >= a^2          (2)

Từ (1) và (2) suy ra a^2 <= x^2 < (a+2)^2  nên x^2 = a^2 hoặc x^2 = (a+1)^2.

+) TH1 : x^2 = a^2 

<=> a^2 + 3b = a^2   <=> b = 0

Mà b^2 + 3a = y^2 nên 3a = y^2 

=> y^2 chia hết cho 3  =>  y chia hết cho 3  =>  y = 3k (k thuộc N) 

Khi đó 3a = 9k^2  <=> a = 3k^2.

Nghiệm (a,b) = (3k^2 , 0) với k thuộc N là một nghiệm của bài toán.

+) TH2 : x^2 = (a+1)^2

<=> a^2 + 3b = a^2 + 2a + 1

<=> 3b = 2a + 1 là số lẻ nên b là số lẻ.  Đặt b = 2m+1 (m thuộc N)

=> 6m + 3 = 2a + 1  <=>  a = 3m + 1

Vì b^2 + 3a = y^2 nên (2m+1)^2 + 3.(3m+1) = y^2

<=> 4m^2 + 13m + 4 = y^2 

<=> 64m^2 + 208m + 64 = 16y^2

<=> (8m + 13)^2 - (4y)^2 = 105

<=> (8m + 4y + 13)(8m - 4y + 13) = 105

Đến đây bạn dùng phương pháp tích ước số giải tiếp nha.

24 tháng 11 2016

b)

a=3n+1+3n-1=3n(3+1)-1=3n*4-1

Để a chia hết cho 7 thì aEB(7)={1;7;14;28;35;...}

=>{3n*4}E{2;8;15;29;36;...}

=>3nE{9;...} => nE{3;...}

b=2*3n+1-3n+1=3n*(6-1)+1=3n*5+1

Để b chia hết cho 7 thì bEB(7)={1;7;14;28;35;...}

=>{3N*5}E{0;6;13;27;34;...}

=>3NE{0;...}

=>NE{0;...}

=>đpcm(cj ko chắc cách cm này)

25 tháng 10 2016

Có: \(\left|3x-4y\right|^{2011}\ge0;\left(x^2+y^2-100\right)^{2012}\ge0\)

Mà theo đề bài: |3x - 4y|2011 + (x2 + y2 - 100)2012 = 0

\(\Rightarrow\begin{cases}\left|3x-4y\right|^{2011}=0\\\left(x^2+y^2-100\right)^{2012}=0\end{cases}\)\(\Rightarrow\begin{cases}3x-4y=0\\x^2+y^2-100=0\end{cases}\)\(\Rightarrow\begin{cases}3x=4y\\x^2+y^2=100\end{cases}\)

Ta có: 3x = 4y => x/4 = y/3 => x2/16 = y2/9

Áp dụng tính chất của dãy tỉ số = nhau ta có:

x2/16 = y2/9 = x2+y2/16+9 = 100/25 = 4

\(\Rightarrow\begin{cases}x^2=4.16=64\\y^2=4.9=36\end{cases}\)\(\Rightarrow\begin{cases}x\in\left\{8;-8\right\}\\y\in\left\{6;-6\right\}\end{cases}\)

Vậy các cặp giá trị (x;y) tương ứng thỏa mãn đề bài là: (8;6) ; (-8;-6)

 

 

 

 

 

25 tháng 10 2016

cảm ơn bn nhìu yeu nhá

20 tháng 6 2016

Câu 1

4 p/s   cộng thêm 1,p/s cuối trừ 4 rồi nhóm vs nhau

d/s la x= - 329

Câu   2

NHân vs 7 thành 7S rồi rút gọn là đc

 

20 tháng 6 2016

Câu 1 :

a) \(\Leftrightarrow\left(\frac{x+2}{327}+1\right)+\left(\frac{x+3}{326}+1\right)+\left(\frac{x+4}{325}+1\right)+\left(\frac{x+5}{324}+1\right)+\left(\frac{x+349}{5}-4\right)=0\)

\(\Leftrightarrow\frac{x+329}{327}+\frac{x+329}{326}+\frac{x+329}{325}+\frac{x+329}{324}+\frac{x+329}{5}=0\)

\(\Rightarrow\left(x+329\right).\left(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}+\frac{1}{5}\right)=0\)

Dễ thấy \(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}\ne0\) \(\Rightarrow x+329=0\Rightarrow x=-329\)

22 tháng 9 2016

oho nhiều quá trời, lm chắc mỏi tay luôn

23 tháng 9 2016

\(\left(\frac{1}{2}\right)^5\times x=\left(\frac{1}{2}\right)^7\) 

              \(x=\left(\frac{1}{2}\right)^7\div\left(\frac{1}{2}\right)^5\)

             \(x=\left(\frac{1}{2}\right)^{7-5}=\left(\frac{1}{2}\right)^2=\frac{1}{4}\) .

\(\left(\frac{3}{7}\right)^2\times x=\left(\frac{9}{21}\right)^2\) 

 \(\left(\frac{3}{7}\right)^2\times x=\left(\frac{3}{7}\right)^4\)            

              \(x=\left(\frac{3}{7}\right)^4\div\left(\frac{3}{7}\right)^2\)

              \(x=\left(\frac{3}{7}\right)^{4-2}=\left(\frac{3}{7}\right)^2=\frac{9}{49}\)

\(2^x=2\Rightarrow x=1\)

\(3^x=3^4\Rightarrow x=4\)

\(7^x=7^7\Rightarrow x=7\)

\(\left(-3\right)^x=\left(-3\right)^5\Rightarrow x=5\)

\(\left(-5\right)^x=\left(-5\right)^4\Rightarrow x=4\)

\(2^x=4\Leftrightarrow2^x=2^2\Rightarrow x=2\)

\(2^x=8\Leftrightarrow2^x=2^3\Rightarrow x=3\)

\(2^x=16\Leftrightarrow2^x=2^4\Rightarrow x=4\)

\(3^{x+1}=3^2\Leftrightarrow x+1=2\Leftrightarrow x=2-1\Rightarrow x=1\)

\(5^{x-1}=5\Leftrightarrow x-1=1\Leftrightarrow x=1+1\Rightarrow x=2\)

\(6^{x+4}=6^{10}\Leftrightarrow x+4=10\Leftrightarrow x=10-4\Rightarrow x=6\)

\(5^{2x-7}=5^{11}\Leftrightarrow2x-7=11\Leftrightarrow2x=11+7\Leftrightarrow2x=18\Leftrightarrow x=18\div2\Rightarrow x=9\)

\(\left(-2\right)^{4x+2}=64\)

\(2^{-4x+2}=2^6\Leftrightarrow-4x+2=6\Leftrightarrow-4x=6-2\Leftrightarrow-4x=4\Leftrightarrow x=4\div\left(-4\right)\Rightarrow x=-1\)

\(\left(\frac{1}{2}\right)^x=\left(\frac{1}{2}\right)^5\Rightarrow x=5\)

\(\left(\frac{5}{6}\right)^{2x}=\left(\frac{5}{6}\right)^5\Rightarrow2x=5\Rightarrow x=\frac{5}{2}\)

\(\left(\frac{3}{4}\right)^{2x-1}=\left(\frac{3}{4}\right)^{5x-4}\Rightarrow2x-1=5x-4\)

                                      \(2x-5x=-4+1\) 

                                           \(-3x=-3\Rightarrow x=1\)

\(\left(\frac{-1}{10}\right)^x=\frac{1}{100}\)

 \(\left(\frac{1}{10}\right)^{-x}=\left(\frac{1}{10}\right)^2\Rightarrow-x=2\Rightarrow x=-2\)

\(\left(\frac{-3}{2}\right)^x=\frac{9}{4}\)

\(\left(\frac{3}{2}\right)^{-x}=\left(\frac{3}{2}\right)^2\Rightarrow-x=2\Rightarrow x=-2\)

\(\left(\frac{-3}{5}\right)^{2x}=\frac{9}{25}\)

 \(\left(\frac{3}{5}\right)^{-2x}=\left(\frac{3}{5}\right)^2\Rightarrow-2x=2\Rightarrow x=-1\)

\(\left(\frac{-2}{3}\right)^x=\frac{-8}{27}\)

\(\left(\frac{-2}{3}\right)^x=\left(\frac{-2}{3}\right)^3\Rightarrow x=3\).

hehe.heheoho đánh tới què tay, hoa mắt lun r nekkk!!hum

Bài 1: 

a: \(\left(2x-1\right)^4=16\)

=>2x-1=2 hoặc 2x-1=-2

=>2x=3 hoặc 2x=-1

=>x=3/2 hoặc x=-1/2

b: \(\left(2x-y+7\right)^{2012}+\left|x-3\right|^{2013}< =0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-y+7=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2x+7=y=2\cdot3+7=13\end{matrix}\right.\)

c: \(10800=2^4\cdot3^3\cdot5^2\)

mà \(2^{x+2}\cdot3^{x+1}\cdot5^x=10800\)

nên \(\left\{{}\begin{matrix}x+2=4\\x+1=3\\x=2\end{matrix}\right.\Leftrightarrow x=2\)