\(A\left(x\right)=x^2+x+2\)

Chứng minh A(x) không có nghiệm dương

 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Có \(P\left(1\right)=2.1^2+2m.1+m^2=2+2m+m^2\)

\(Q\left(1\right)=\left(-1\right)^2+4\left(-1\right)+5=1-4+5=2\). Vì \(P\left(1\right)=Q\left(-1\right)\)

\(\Rightarrow2+2m+m^2=2\Leftrightarrow2m+m^2=2-2=0\Leftrightarrow m\left(2+m\right)=0\)

\(\Rightarrow m=0\) hoặc \(2+m=0\Leftrightarrow m=0-2=-2\)

b) Đặt \(Q\left(x\right)=x^2+4x+5=0\Leftrightarrow x^2+4x=0-5=-5\)

\(\Leftrightarrow x\left(x+4\right)=-5\). Từ đó bạn lập bảng ra sẽ thấy k có trường hợp thỏa mãn => Vô nghiệm

3 tháng 7 2017

H(x)=\(-\frac{5}{4}x^2+\frac{5}{3}x-3\)

Áp dụng CT giải PT bậc 2 ta có: \(\Delta=b^2-4ac=\frac{25}{9}-15=-\frac{110}{9}\)

Vì đenta <0 suy ra pt vô nghiệm (DPCM)

19 tháng 7 2017

Mình làm gộm 2 ý luôn nhé

Ta có : \(Q\left(x\right)=5x+3x^2+5+x^2+2x^4=5x+4x^2+5+2x^4\)

Ta có : \(M\left(x\right)=P\left(x\right)+Q\left(x\right)=\left(x^4-5x+2x^2+1\right)+\left(5x+4x^2+5+2x^4\right)\)

\(=x^4-5x+2x^2+1+5x+4x^2+5+2x^4\)

\(=5x^4+6x^2+6\)

Mà : \(5x^4+6x^2\ge0\forall x\)

Nên : \(5x^4+6x^2+6\ge6\forall x\)

Suy ra : M(x) > 0 với mọi x

Vậy M(x) vô nghiệm

19 tháng 7 2017

a) P(x) = x4 - 5x + 2x2 + 1 = x4 + 2x2 - 5x + 1 

Q(x) = 5x + 3x2 + 5 + 1x2 + x4.2 = 2x4 + 4x2 + 5x + 5

        P(x) = x4 + 2x2 - 5x + 1
+
        Q(x) = 2x4 + 4x2 + 5x + 5
_________________________
P(x)+Q(x) = 3x4 + 6x2 + 6

b) Ta có: \(\hept{\begin{cases}3x^4\ge0\\6x^2\ge0\end{cases}}\forall x\)

\(\Rightarrow3x^4+6x^2\ge0\forall x\)

\(\Rightarrow M\left(x\right)=3x^4+6x^2+6\ge6>0\forall x\)

Vậy M(x) không có nghiệm

31 tháng 3 2020

Bài 1:

1. Thay x=-5;y=3 vào P ta được:

P=\(2.\left(-5\right)\left[\left(-5\right)+3-1\right]+\left(3\right)^2+1\)=40

2. P=2x(x+y-1)+y2+1

\(\Leftrightarrow P=2x^2+2xy-2x+y^2+1\)

\(\Leftrightarrow P=\left(x+y\right)^2+(x^2-2.\frac{1}{2}x+\frac{1}{4})+\frac{3}{4}\)

\(\Leftrightarrow P=\left(x+y\right)^2+(x-\frac{1}{2})^2+\frac{3}{4}\) >0 \(\forall x;y\:\)

Bạn tham khảo nha, không hiểu thì cứ hỏi mình nha

31 tháng 3 2020

Bài 2:

1. f(x)=g(x)-h(x)=4x2+3x+1-(3x2-2x-3)

\(\Leftrightarrow f\left(x\right)=x^2+5x+4\)

2. Thay x=-4 vào f(x) ta được: f(4)=(-4)2+5(-4)+4=0

Vậy x=-4 là nghiệm của f(x)

3. \(\Leftrightarrow f\left(x\right)=x^2+5x+4\)

\(\Leftrightarrow f\left(x\right)=x\left(x+1\right)+4\left(1+x\right)\)

\(\Leftrightarrow f\left(x\right)=\left(x+4\right)\left(x+1\right)\)=0

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-4\end{matrix}\right.\)

Vậy tập hợp nghiệm của f(x) là \(\left\{-4;-1\right\}\)

Bạn tham khảo nha, không hiểu cứ hỏi mình ha

24 tháng 4 2017

a)P(x)=\(x^5-3x^2+7x^4-9x^3+x^2-\dfrac{1}{4}x\)

=\(x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x\)

Q(x)=\(5x^4-x^5+x^2-2x^3+3x^2-\dfrac{1}{4}\)

=\(-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)

b) P(x)=\(x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x\)

+ Q(x)=\(-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)

__________________________________

P(x)+Q(x)= \(12x^4-11x^3+2x^2-\dfrac{1}{4}x-\dfrac{1}{4}\)

P(x)=\(x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x\)

- Q(x)=\(-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)

_________________________________________

P(x)-Q(x)=\(2x^5+2x^4-7x^3-6x^2-\dfrac{1}{4}x-\dfrac{1}{4}\)

c)Thay x=0 vào đa thức P(x), ta có:

P(x)=\(0^5+7\cdot0^4-9\cdot0^3-2\cdot0^2-\dfrac{1}{4}\cdot0\)

=0+0-0-0-0

=0

Vậy x=0 là nghiệm của đa thức P(x).

Thay x=0 vào đa thức Q(x), ta có:

Q(x)=\(-0^5+5\cdot0^4-2\cdot0^3+4\cdot0^2-\dfrac{1}{4}\)

=0+0-0+0-\(\dfrac{1}{4}\)

=0-\(\dfrac{1}{4}\)

=\(\dfrac{-1}{4}\)

Vậy x=0 không phải là nghiệm của đa thức Q(x).

19 tháng 4 2017

a) Sắp xếp theo lũy thừa giảm dần

P(x)=x53x2+7x49x3+x214xP(x)=x5−3x2+7x4−9x3+x2−14x

=x5+7x49x32x214x=x5+7x4−9x3−2x2−14x

Q(x)=5x4x5+x22x3+3x214Q(x)=5x4−x5+x2−2x3+3x2−14

=x5+5x42x3+4x214=−x5+5x4−2x3+4x2−14

b) P(x) + Q(x) = (x5+7x49x32x21

5 tháng 5 2018

bạn trả lời vs thầy là :

" bài này nhìn qua cx biết nó > 0 oy, nên vô nghiệm "

chỉ có những thằng thiểu năng mới hỏi câu kiểu này

5 tháng 5 2018

a, \(x^2+1\)

Có \(x^2\ge0\forall x\)=>x^2+1 >0

vậy đa thức vô nghiệm

b,(2x+1)^2+3

 có (2x+1)^2\(\ge\)0 với mọi x

 =>(2x+1)^2+3>0 

=>đa thức này không có nghiệm

27 tháng 11 2020

Bài 1 : 

\(A=x^2-2xy^2+y^4=\left(x-y^2\right)^2=-\left(y^2-x\right)^2\)

Mà \(B=-\left(y^2-x\right)^2\)

Nên ta có : đpcm 

27 tháng 11 2020

Bài 2 

Đặt \(\left(x+1\right)\left(x-2\right)\left(2x-1\right)=0\)

TH1 : x = -1

TH2 : x = 2

TH3 : x = 1/2 

Bài 4 : 

a, \(\left(2x+3\right)\left(5-x\right)=0\Leftrightarrow x=-\frac{3}{2};5\)

b, \(\left(x-\frac{1}{2}\right)\left(3x+1\right)\left(2-x\right)=0\Leftrightarrow x=\frac{1}{2};-\frac{1}{3};2\)

c, \(x^2+2x=0\Leftrightarrow x\left(x+2\right)=0\Leftrightarrow x=0;-2\)

d, \(x^2-x=0\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow x=0;1\)