Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A+B=a+b-5+(-b-c+1)=a+b-5-b-c+1=a-c-4 (1)
C-D=b-c-4-(b-a)=b-c-4-b+a=a-c-4 (2)
từ (1) và (2) suy ra A+B=C-D
Ta có \(\frac{a}{a+b+c}\)> \(\frac{a}{a+b+c+d}\)
\(\frac{b}{b+c+a}\)> \(\frac{b}{b+c+a+d}\)
tương tự ....
suy ra cái đề > 1 dpcm
1, a(b+c)-b(a-c)=(a+b)c
\(ab+ac-ba+bc=\left(a+b\right)c\)
\(a.\left(b-b\right)+\left(a+b\right).c=\left(a+b\right)c\)
\(a.0+\left(a+b\right)c=\left(a+b\right)c\)
\(\left(a+b\right)c=\left(a+b\right)c\)
\(\Rightarrowđpcm\)
2, a(b-c)-a(b+d)=-a(c+d)
\(ab-ac-ab-ad=a.\left(c+d\right)\)
\(a.\left(b-c-b-d\right)=a\left(-c-d\right)\)
\(a.\left(-c-d\right)=a.\left(-c-d\right)\)
\(\Rightarrowđpcm\)
3, (a+b)(c+d)-(a+d)(b+c)=(a-c)(d-b)
=ac+ad+bc+bd-ab-ac-bd-dc
=ad-ab+bc-dc
=(ad-ab)+(bc-dc)
=a(d-b)+c(b-d)
=a(d-b)-c(d-b)
=(a-c)(d-b) =VP.
\(\Rightarrowđpcm\)
học tốt
1,a.(b+c)-b.(a-c)
=a.b+a.c-(b.a-b.c)
=a.b+a.c-b.a+b.c
=(a.b-b.a)+(a.c+b.c)
=0+c.(a+b)=c.(a+b)
2)a.(b-c)-a.(b+d)
=a.b-a.c-(a.b+a.d)
=a.b-a.c-a.b-a.d
=(a.b-a.b)-a.c-a.d
=0-a.c-a.d
=-a.c-a.d
=-a.c+(-a.d)
=-a.(c+d)
3)(a+b).(c+d)-(a+d).(b+c)
=a.c+a.d+a.c+a.d-(a.b+a.c+d.b+d.c)
=a.c+a.d+a.c+b.d-a.b-a.c-d.b-d.c
=(a.c-a.c)+(b.d-d.b)+a.d+a.c-a.b-d.c
=0+0+(a-c).(d-b)
=(a-c).(d-b)
Lời giải:
$A+B=(a+b-5)+(-b-c+1)=a+b-5-b-c+1=a-c-4$
$C+D=b-c-4+b-c=2b-4$
Do đó không đủ cơ sở để kết luận $A+B=C+D$ bạn nhé.
Ta có: \(\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)
\(\frac{b}{b+c+d}>\frac{b}{a+d+c+d}\)
\(\frac{c}{c+d+a}>\frac{c}{a+b+c+d}\)
\(\frac{d}{d+a+b}>\frac{d}{a+b+c+d}\)
\(\Rightarrow\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+b+a}+\frac{d}{d+a+b}< \frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{a+b+c+d}+\frac{d}{a+b+c+d}\)
\(\Rightarrow\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}>\frac{a+b+c+d}{a+b+c+d}\)
\(\Rightarrow\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 1\) (1)
Lại có: \(\frac{a}{a+b+c}< \frac{a+c}{a+b+c+d}\)
\(\frac{b}{b+c+d}< \frac{b+d}{a+b+c+d}\)
\(\frac{c}{c+d+a}< \frac{c+a}{a+b+c+d}\)
\(\frac{d}{d+a+b}< \frac{d+b}{a+b+c+d}\)
\(\Rightarrow\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< \frac{a+c}{a+b+c+d}+\frac{b+d}{a+b+c+d}+\frac{c+a}{a+b+c+d}+\frac{d+b}{a+b+c+d}\)
\(\Rightarrow\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< \frac{2a+2b+2c+2d}{a+b+c+d}=\frac{2\left(a+b+c+d\right)}{a+b+c+d}=2\)
\(\Rightarrow\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 2\) (2)
Từ (1)(2) => \(1< \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 2\) (đpcm)
\(\frac{a}{b}=\frac{c}{d}\)
Ta có : \(\frac{ad}{bd}+\frac{bc}{bd}=\frac{ad+bc}{bd+bd}=\frac{a+c}{b+d}\)
\(\Rightarrow\frac{a}{b}=\frac{a+c}{b+d}\)
\(a,\)đặt \(\frac{a}{b}=\frac{c}{d}=k\left(1\right)\)
\(\frac{a}{b}=k\Rightarrow a=b.k\)
\(\frac{c}{d}=k\Rightarrow c=d.k\)
\(\Rightarrow\frac{a+c}{b+d}=\frac{b.k+d.k}{b+d}=\frac{k\left(b+d\right)}{b+d}=k\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\left(đpcm\right)\)