K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2019
Từ giả thiết suy ra \((a+b-c)(a+b+c)=2ab\) Nếu \(a+b+c\) lẻ thì suy ra \(2ab\) chia hết cho \(a+b+c\). Mà \((2,a+b+c)=1\) nên \(ab\) chia hết cho \(a+b+c\) Nếu \(a+b+c\) chẵn suy ra\( a+b-c\) chẵn. Suy ra \(ab=k(a+b+c)\) nên \(ab\) chia hết cho \(a+b+c\)
25 tháng 8 2017

 Từ x/2 = y/3 => x/10 = y/15 (1) 

Từ y/5 = z/4 => y/15 = z/12 (2) 

Từ (1) và (2) ta có: x/10 = y/15 = z/12 

Áp dụng t/c dãy tỷ số bằng nhau ta có: 

x/10 = y/15 = z/12 = (x + y - z)/(10 + 15 - 12) = 39/13 = 3 

Từ x/10 = 3 => x = 30 

Từ y/15 = 3 => y = 45 

Từ z/12 = 3 => z = 36 

6 tháng 1 2015

Bài 1: 

a) P=(a+5)(a+8) chia hết cho 2

Nếu a chẵn => a+8 chẵn=> a+8 chia hết cho 2 => (a+5)(a+8) chia hết cho 2

Nếu a lẽ => a+5 chẵn => a+5 chia hết cho 2 => (a+5)(a+8) chia hết cho 2

Vậy P luôn chia hết cho 2 với mọi a

b) Q= ab(a+b) chia hết cho 2

Nếu a chẵn => ab(a+b) chia hết cho 2

Nếu b chẵn => ab(a+b) chia hết cho 2

Nếu a và b đều lẽ => a+b chẵn => ab(a+b) chia hết cho 2

Vậy Q luôn chia hết cho 2 với mọi a và b

 

10 tháng 7 2015

bài 3:n5- n= n(n-1)(n+1)(n2+1)=n(n-1)(n+1)(n2+5-4)=n(n-1)(n+1)(n-2)(n+2)+5n(n-1)(n+1).

Vì: n(n-1)(n+1)(n-2)(n+2) là 5 số nguyên liên tiếp thì chia hết cho 10                   (1)

ta lại có: n(n+1) là 2 số nguyên liên tiếp nên chia hết cho 2

=> 5n(n-1)n(n+1) chia hết cho 10                                                                     (2)

Từ (1) và (2) => n5- n chia hết cho 10

2 tháng 9 2015

1, n có dạng 2k+1(n\(\in N\)) Ta có: 

  \(n^2+4n+3=\left(2k+1\right)^2+4\left(2k+1\right)+3\) 

                                 \(=4k^2+4k+1+8k+4+3\) 

                                 \(=4k^2+12k+8\) 

                                 \(=4\left(k^2+3k+2\right)\) 

                                \(=4\left(k+1\right)\left(k+2\right)\) 

vì (k+1)(k+2) là tích 2 số tự nhiên liên tiếp \(\Rightarrow\left(k+1\right)\left(k+2\right)\) chia hết cho 2  

 mà 4(k+1)(k+2)chia hết cho 4 

\(\Rightarrow n^2+4n+3\) chia hết cho 8 với mọi n  là số lẻ. 

2, ta có:  

        \(a^3+b^3+c^3=\left(a+b+c\right)\left(ab-bc-ac\right)+3abc\) 

 \(\Rightarrow a^3+b^3+c^3=3abc\) (vì a+b+c=0)

a+b+c=0

=>(a+b+c)3=0

=>a3+b3+c3+3a2b+3ab2+3b2c+3bc2+3a2c+3ac2+6abc=0

=>a3+b3+c3+(3a2b+3ab2+3abc)+(3b2c+3bc2+3abc)+(3a2c+3ac2+3abc)-3abc=0

=>a3+b3+c3+3ab(a+b+c)+3bc(a+b+c)+3ac(a+b+c)=3abc

Do a+b+c=0

=>a3+b3+c3=3abc(ĐPCM)

AH
Akai Haruma
Giáo viên
25 tháng 2 2019

Lời giải:

Ta có:
\(a^2-ab+b^2\vdots 9\vdots 3\)

\(\Leftrightarrow a^2+2ab+b^2-3ab\vdots 3\)

\(\Leftrightarrow (a+b)^2-3ab\vdots 3\Rightarrow (a+b)^2\vdots 3\Rightarrow a+b\vdots 3\) (do $3$ là số nguyên tố)

\(\Rightarrow (a+b)^2\vdots 9\)

\(a^2-ab+b^2=(a+b)^2-3ab\vdots 9\) (giả thiết)

Suy ra \(3ab\vdots 9\Rightarrow ab\vdots 3\). Do đó tồn tại ít nhất một trong 2 số $a$ hoặc $b$ chia hết cho $3$. Không mất tổng quát, giả sử $a$ chia hết cho $3$

Khi đó \(a(a-b)\vdots 3\), mà \(a^2-ab+b^2=a(a-b)+b^2\vdots 3\)

\(\Rightarrow b^2\vdots 3\Rightarrow b\vdots 3\)

Vậy $a,b$ đều chia hết cho $3$

21 tháng 8 2019

Ta có: \(n^2\left(n+1\right)+2n\left(n+1\right)=\left(n+1\right)\left(n^2+2n\right)=\left(n+1\right)n\left(n+2\right)=n\left(n+1\right)\left(n+2\right)\)

\(n\left(n+1\right)\left(n+2\right)⋮3\)( tích 3 số tự nhiên liên tiếp chia hết cho 3)

\(n\left(n+1\right)⋮2\)(ích hai số tự nhiên liên tiếp chia hết cho 2)

Mà (2;3)=1

=> \(n\left(n+1\right)\left(n+2\right)⋮6\)

=>\(n^2\left(n+1\right)+2n\left(n+1\right)⋮6\)

Câu b em kiểm tra lại đề bài.

AH
Akai Haruma
Giáo viên
23 tháng 5 2018

Lời giải:

Gọi $d$ là ước chung lớn nhất của $a,b$

Khi đó, đặt \(\left\{\begin{matrix} a=dx\\ b=dy\end{matrix}\right.(x,y)=1\)

Ta có: \(ab(a+b)\vdots a^2+ab+b^2\)

\(\Leftrightarrow dxdy(dx+dy)\vdots (dx)^2+dxdy+(dy)^2\)

\(\Leftrightarrow dxy(x+y)\vdots x^2+xy+y^2\)

Do $x,y$ nguyên tố cùng nhau nên :

\((x,x^2+xy+y^2)= (y,x^2+xy+y^2)=(x+y,x^2+xy+y^2)=1\)

Suy ra \(d\vdots x^2+xy+y^2\)

\(\Rightarrow d\geq x^2+xy+y^2\)

\(\Rightarrow d^3\geq a^2+ab+b^2\)

Mà với $a,b$ nguyên dương phân biệt thì \(a^2+ab+b^2\geq 3ab>ab\)

Do đó \(d^3>ab(1)\)

Mặt khác: $a,b$ nguyên dương phân biệt kéo theo $x,y$ nguyên dương phân biệt nên \(|x-y|\geq 1\)

\(\Rightarrow |a-b|=d|x-y|\geq d(2)\)

Từ \((1);(2)\Rightarrow |a-b|^3>ab\Rightarrow |a-b|>\sqrt[3]{ab}\)

Ta có đpcm.

CHUYÊN ĐỀ BỒI DƯỠNG HỌC SINH GIỎI VÀ NĂNG KHIẾUCâu 1. Chứng minh √7 là số vô tỉ.Câu 2.a) Chứng minh: (ac + bd)2 + (ad – bc)2 = (a2 + b2)(c2 + d2)b) Chứng minh bất dẳng thức Bunhiacôpxki: (ac + bd)2 ≤ (a2 + b2)(c2 + d2)Câu 3. Cho x + y = 2. Tìm giá trị nhỏ nhất của biểu thức: S = x2 + y2.Câu 4.a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy: b) Cho a, b, c > 0. Chứng minh rằng: c) Cho a, b > 0 và 3a + 5b = 12....
Đọc tiếp

CHUYÊN ĐỀ BỒI DƯỠNG HỌC SINH GIỎI VÀ NĂNG KHIẾU

Câu 1. Chứng minh √7 là số vô tỉ.

Câu 2.

a) Chứng minh: (ac + bd)2 + (ad – bc)2 = (a2 + b2)(c2 + d2)

b) Chứng minh bất dẳng thức Bunhiacôpxki: (ac + bd)2 ≤ (a2 + b2)(c2 + d2)

Câu 3. Cho x + y = 2. Tìm giá trị nhỏ nhất của biểu thức: S = x2 + y2.

Câu 4.

a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy: 

b) Cho a, b, c > 0. Chứng minh rằng: 

c) Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.

Câu 5. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức: M = a3 + b3.

Câu 6. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức: N = a + b.

Câu 7. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)

Câu 8. Tìm liên hệ giữa các số a và b biết rằng: |a + b| > |a - b|

Câu 9.

a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a

b) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8

Câu 10. Chứng minh các bất đẳng thức:

a) (a + b)2 ≤ 2(a2 + b2)

b) (a + b + c)2 ≤ 3(a2 + b2 + c2)

1
6 tháng 6 2016

Cau 9

(a+1)2=a2+2a+1  

Mà a2+1 >hoặc=4a[Bất đẳng thức Cô-si

Suy ra  2a+4a>hoac=4a

Vay.....

6 tháng 1 2017

tách hết ra đk đấy