K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đề KSHSG lần 1 huyện Sông Lô - Vĩnh Phúc môn toán lớp 8,5 Câu 1:a) Phân tích đa thức thành nhân tử: \(xy\left(x+y\right)-yz\left(y+z\right)-zx\left(z-x\right)\)b) Cho x,y,z thỏa mãn: \(\frac{x-y}{\left(z-x\right)\left(z-y\right)}+\frac{y-z}{\left(x-y\right)\left(x-z\right)}+\frac{z-x}{\left(y-z\right)\left(y-x\right)}=2022\)Hãy tính \(P=\frac{1}{x-y}+\frac{1}{y-z}+\frac{1}{z-x}\) Câu 2: Cho đa...
Đọc tiếp

Đề KSHSG lần 1 huyện Sông Lô - Vĩnh Phúc môn toán lớp 8,5

 

Câu 1:

a) Phân tích đa thức thành nhân tử: \(xy\left(x+y\right)-yz\left(y+z\right)-zx\left(z-x\right)\)

b) Cho x,y,z thỏa mãn: 

\(\frac{x-y}{\left(z-x\right)\left(z-y\right)}+\frac{y-z}{\left(x-y\right)\left(x-z\right)}+\frac{z-x}{\left(y-z\right)\left(y-x\right)}=2022\)

Hãy tính \(P=\frac{1}{x-y}+\frac{1}{y-z}+\frac{1}{z-x}\)

 

Câu 2: Cho đa thức \(P\left(x\right)=\left(x+5\right)\left(x+10\right)\left(x+15\right)\left(x+20\right)+2021\)

Tìm đa thức dư khi chia P(x) cho đa thức \(x^2+25x+120\)

 

Câu 3: Cho a,b,c,d là các số nguyên thỏa mãn: \(a^3+b^3+19d^3-5c^3=0\)

Chứng minh rằng: a + b + c + d chia hết cho 3

 

Câu 4: Tìm nghiệm nguyên của PT:

\(4x^2+2xy+4x+y+3=0\)

 

Câu 5: Cho phương trình: \(\frac{x-2}{x-m}=\frac{x-1}{x+2}\) , tìm m để PT vô nghiệm

 

Câu 6: Cho a,b,c không âm thỏa mãn a + b + c = 3. Tìm Min và Max của:

\(P=\frac{a}{b^2+1}+\frac{b}{c^2+1}+\frac{c}{a^2+1}\)

 

Câu 7: Cho p là số nguyên tố, biết p2 + 23 có đúng 14 ước dương. Tìm p

 

Câu 8: Cho tam giác ABC vuông tại A, (AB > AC), đường cao AH. Trên nửa mặt phẳng bờ AH chứa điểm C vẽ hình vuông AHKE. Gọi P là giao điểm của KE và AC

a) Chứng minh tam giác ABP vuông cân

b) Vẽ hình vuông APQB. Gọi I là giao điểm của BP và AQ. Chứng minh H,I,E thẳng hàng

 

Câu 9: Cho tam giác ABC có \(\widehat{A}>\widehat{B}\). Trên cạnh BC lấy điểm H sao cho \(\widehat{HAC}=\widehat{ABC}\). Đường phân giác của góc BAH cắt BH tại E. Từ trung điểm M của AB kẻ ME cắt đường thẳng AH tại F. CMR: CF // AE

 

Câu 10: Cho đa giác đều 12 cạnh A1A2...A12 . Tại đỉnh A1 ta viết dấu (-) , các đỉnh còn lại ta viết dấu (+) . Mỗi lần cho phép lấy ra ba đỉnh liên tiếp và đổi dấu đồng thời các đỉnh đó. Hỏi sau hữu hạn bước có thể nhận được kết quả là đỉnh A2 mang dấu (-) còn các đỉnh khác mang dấu (+) được không?

 

5
24 tháng 9 2020

Câu 1

a) xy(x+y)-yz(y+z)+zx[(x+y)-(y+z)]=xy(x+y)+zx(x+y)-yz(y+z)-zx(y+z)=x(x+y)(y+z)-z(y+z)(y+x)=(x+y)(y+z)(x-z)

b) \(\frac{x-y}{\left(z-x\right)\left(z-y\right)}+\frac{y-z}{\left(x-y\right)\left(x-z\right)}+\frac{z-x}{\left(y-z\right)\left(y-x\right)}=2022\)

\(\Leftrightarrow\frac{x-z+z-y}{\left(z-x\right)\left(z-y\right)}+\frac{y-z+x-z}{\left(x-y\right)\left(x-z\right)}+\frac{z-y+y-x}{\left(y-z\right)\left(y-x\right)}=2022\)

\(\Leftrightarrow\frac{-1}{z-y}+\frac{-1}{z-x}+\frac{-1}{x-z}+\frac{-1}{x-y}+\frac{-1}{x-y}+\frac{-1}{y-z}+\frac{1}{y-z}=2022\)

\(\Leftrightarrow2\left(\frac{1}{x-y}+\frac{1}{y-z}+\frac{1}{z-x}\right)=2022\)

\(\Leftrightarrow\frac{1}{x-y}+\frac{1}{y-z}+\frac{1}{z-x}=1011\)

24 tháng 9 2020

Câu 8: bạn sửa lại đề: AB<AC

a) Xét tam giác AHB và tam giác AEP có:

\(\widehat{AHB}=\widehat{AEP}=90^0\)

AH=KE (Tứ giác AHKE là hình vuông)

\(\widehat{HAB}=\widehat{AEP}\)(cùng phụ với \(\widehat{HAC}\))

\(\Rightarrow\Delta AHB=\Delta AEP\)(g-c-g)

=> AB=AP (2 cạnh tương ứng) => \(\Delta\)BAP cân tại A

b) Tứ giác ABQP là hình vuông nên IA=IB=IQ=IP (1)

Tam giác BKP vuông tại K nên KP=KB=KI (2)

Từ (1) và (2) suy ra: AI=KI nên I là đường trung trực của AK (3)

Vì AHKE là hình vuông nên HE là trung trực của AK (4)

Từ (3) và (4) suy ra: H;I:E cùng thuộc đường trung trực của AK hay H;I:E thằng hàng (đpcm)

Câu 9: Có \(\widehat{CEA}=\widehat{B}+\widehat{BAE}=\widehat{HAC}+\widehat{EAH}=\widehat{CAE}\)

\(\Rightarrow\Delta CAE\)cân tại C => CA=CE (1)

Qua H kẻ đường thằng song song với AB cắt MF ở K. Ta có \(\frac{BE}{EH}=\frac{MB}{KH}=\frac{MA}{KH}=\frac{FA}{FH}\left(2\right)\)

AE là phân giác của tam giác ABH nên \(\frac{BE}{EH}=\frac{AB}{AH}\left(3\right)\)

\(\Delta CAH\)và \(\Delta CBA\)đồng dạng \(\Rightarrow\frac{AB}{AH}=\frac{CA}{CH}=\frac{CE}{CH}\)(theo (1)) (4)

Từ (2);(3) và (4) => \(\frac{FA}{FH}=\frac{CE}{CH}\)hay \(\frac{AE}{FH}=\frac{CE}{CH}\)=> CF//AE (đpcm)

Câu 10: 

Chia các đỉnh của tam giác thành 3 nhóm \(\left\{A_1;A_4;A_7;A_{10}\right\};\left\{A_2;A_5;A_8;A_{11}\right\};\left\{A_3;A_6;A_9;A_{12}\right\}\)

Chọn 3 đỉnh liên tiếp thì mỗi đỉnh vào 1 nhóm

Do vậy số dấu "-" trong mỗi nhóm là +1 hoặc -1

Mà nhóm II và nhóm III cùng tính chẵn lẻ về số dấu "-"

Khi bắt đầu nhóm II, nhóm III số dấu "-" bằng 0. Nếu đỉnh A2 mang dấu "-" các đỉnh còn lại mang dấu "+" thì nhóm II, nhóm III khác đỉnh chẵn lẻ về số dấu "=". Mâu thuẫn!

P.s bài trình bày khó hiểu, bạn thông cảm! :)

5 tháng 7 2019

Em(mình) thử nhé, ko chắc đâu

3/ Ta có \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+2abc\)

\(=\left[ab\left(a+b\right)+abc\right]+\left[bc\left(b+c\right)+abc\right]+\left[ca\left(c+a\right)+ca\right]-abc\)

\(=\left(a+b+c\right)ab+\left(a+b+c\right)bc+\left(a+b+c\right)ca-abc\)

\(=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)= -abc

Suy ra \(P=\frac{-abc}{abc}=-1\)

Vậy..

3 tháng 3 2020

a) ta có: \(|4x^2-1|\ge0\forall x\)

\(|2x-1|\ge0\forall x\Leftrightarrow3x|2x-1|\ge0\forall x\)

Mà \(|4x^2-1|+3x|2x-1|=0\)

=> I4x^2-1I và 3xI2x-1I=0

=> 4x^2-1=0 và 3x=0 hoặc 2x-1=0

=> 4x^2=1 và x=0 hoặc 2x=1

=> x^2=1/4 và x=0 hoặc x=1/2

=> x=\(\pm\frac{1}{2}\)và x=0 hoặc x=1/2

Vậy x=\(\pm\frac{1}{2}\); x=0

3 tháng 3 2020

Phạm Nhật Quỳnh

Bạn xem lại nhé x chưa chắc đã dương nha 

Đây là đề thi hsg lớp 8..mong các bạn giúp đỡ mình ạCÂU 1:giải phương trình\(\frac{x+13}{2000}+\frac{x+12}{2001}+\frac{x+11}{2002}+\frac{x+8052}{2013}=0\)\(0\)CÂU 2:a)Tìm x thuộc Z để A thuộc Z .A=\(\frac{\left(\frac{1}{2x-1}+\frac{3}{1-4x^2}-\frac{2}{2x+1}\right)}{\frac{x^2}{2x^2+x}}\)b)cho 3 số a,b,c thỏa mãn:\(a^2+b^2+c^2=\frac{\left(a+b+c\right)^2}{3}\). Tìm Giá trị nhỏ nhất của biểu thức:B=\(a^2+b^2+c^2-\left(a+2b+3c\right)+2017\)   CÂU...
Đọc tiếp

Đây là đề thi hsg lớp 8..mong các bạn giúp đỡ mình ạ

CÂU 1:giải phương trình

\(\frac{x+13}{2000}+\frac{x+12}{2001}+\frac{x+11}{2002}+\frac{x+8052}{2013}=0\)\(0\)

CÂU 2:a)Tìm x thuộc Z để A thuộc Z .A=\(\frac{\left(\frac{1}{2x-1}+\frac{3}{1-4x^2}-\frac{2}{2x+1}\right)}{\frac{x^2}{2x^2+x}}\)

b)cho 3 số a,b,c thỏa mãn:\(a^2+b^2+c^2=\frac{\left(a+b+c\right)^2}{3}\). Tìm Giá trị nhỏ nhất của biểu thức:B=\(a^2+b^2+c^2-\left(a+2b+3c\right)+2017\)   

CÂU 3:Một canô xuôi dòng 9 km và quay trở về đi ngược dòng đến một địa điểm cách chỗ xuất phát ban đầu 1 km thì dừng lại .Tính vận tốc của canô khi nước yên lặng biết vận tốc dòng nước là 2 km /h,, thời gian xuôi dòng ít hơn thời gian ngược dòng là 15 phút   

CÂU 4: Cho tam giác ABC có 3 góc nhọn. các điểm M,N lần lượt là trung điểm  của BC,AC.Gọi H,O,G theo thứ tự là trực tâm , giao điểm các đường trung trực, trọng tâm của tam giác ABC.Chứng minh:a)tam giác AHB đồng dạng với tam giác MON

b)tam giác HAG đồng dạng với tam giác OMG

c)3 điểm H ,G,O thẳng hàng 

CÂU 5:a) chứng minh rằng với mọi số nguyen dương n thì:

S\(=1^3+2^3+3^3+....+n^3=\left(\frac{n\left(n+1\right)}{2}\right)^2\)  

b) chứng minh rằng với mọi n thuộc N thì :A=n(n+1)(n+2)(n+3)+1 là một số chính phương

2
6 tháng 4 2017

Câu 1: 

\(\frac{x+13}{2000}+\frac{x+12}{2001}+\frac{x+11}{2002}+\frac{x+8052}{2013}=0\)

\(\Leftrightarrow\frac{x+13}{2000}+\frac{x+12}{2001}+\frac{x+11}{2002}+\frac{x+2013}{2013}+\frac{6039}{2013}=0\)

\(\Leftrightarrow\frac{x+13}{2000}+\frac{x+12}{2001}+\frac{x+11}{2002}+\frac{x+2013}{2013}+3=0\)

\(\Leftrightarrow\frac{x+13}{2000}+1+\frac{x+12}{2001}+1+\frac{x+11}{2002}+1+\frac{x+2013}{2013}=0\)

\(\Leftrightarrow\frac{x+2013}{2000}+\frac{x+2013}{2001}+\frac{x+2013}{2002}+\frac{x+2013}{2013}=0\)

\(\Leftrightarrow\left(x+2013\right)\left(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}+\frac{1}{2013}\right)=0\)

\(\Leftrightarrow x+2013=0\). Do \(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}+\frac{1}{2013}\ne0\)

\(\Leftrightarrow x=-2013\)

Câu 2:

b)Áp dụng BĐT Cauchy-Schwarz ta có: 

\(\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)

Đẳng thức xảy ra khi \(a=b=c\)

Thay \(a=b=c\) vào \(B=a^2+b^2+c^2-\left(a+2b+3c\right)+2017\)

\(B=3a^2-6a+2017=3a^2-6a+3+2014\)

\(=3\left(a^2-2a+1\right)+2014=3\left(a-1\right)^2+2014\ge2014\)

Đẳng thức xảy ra khi \(a=1\)

Lại có \(a=b=c\Rightarrow a=b=c=1\)

Vậy \(B_{Min}=2014\) khi \(a=b=c=1\)

Câu 5:

\(S_n=1^3+2^3+...+n^3=\left[\frac{n\left(n+1\right)}{2}\right]^2\)

Trước hết ta chứng minh \(1^3+2^3+...+n^3=\left(1+2+...+n\right)^2\) (*)

Với \(n=1;n=2\) (*) đúng

Giả sử (*) đúng với n=k khi đó (*) thành:

\(1^3+2^3+...+k^3=\left(1+2+...+k\right)^2\)

Thật vậy giả sử (*) đúng với n=k+1 khi đó (*) thành:

\(1^3+2^3+...+k^3+\left(k+1\right)^3=\left(1+2+...+k+k+1\right)^2\left(1\right)\)

Cần chứng minh \(\left(1\right)\) đúng, mặt khác ta lại có: 

\(\left(1+2+...+n\right)^2=\left[\frac{n\left(n+1\right)}{2}\right]^2=\frac{\left(n^2+n\right)^2}{4}\)

Đẳng thức cần chứng minh tương đương với:

\(\frac{\left(k^2+k\right)^2}{4}+\left(k+1\right)^3=\frac{\left(k^2+3k+2\right)^2}{4}\)

\(\Leftrightarrow4k^3+12k^2+12k+4=4\left(k+1\right)^3\)

\(\Leftrightarrow4\left(k+1\right)^3=4\left(k+1\right)^3\)

Theo nguyên lí quy nạp ta có Đpcm

Vậy \(S_n=1^3+2^3+...+n^3=\left(1+2+...+n\right)^2=\left[\frac{n\left(n+1\right)}{2}\right]^2\)

b)\(A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\)

\(=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\)

Đặt \(t=n^2+3n\) thì ta có: 

\(A=t\left(t+2\right)+1=t^2+2t+1\)

\(=\left(t+1\right)^2=\left(n^2+3n+1\right)^2\) là SCP với mọi \(n\in N\)

7 tháng 4 2017

thks bạn

1,a, Rút gon biểu thức: \(B=\frac{x^3-y^3-z^3-3xyz}{\left(x+y\right)^2+\left(y-z\right)^2+\left(x+z\right)^2}\)b, Tìm số dư của phép chia A cho B. Biết:\(A=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+9\)\(B=\left(x^2+8x+1\right)\)c, Tìm x là số nguyên tố sao cho: \(\left(x^3-2x^2+7x-7\right)chiah\text{ế}t\left(x^2+3\right)\)2, Cho biểu thức: \(A=\left(\frac{1-x^3}{1-x}+x\right)\left(\frac{1+x^3}{1+x}-x\right)\)a, Rút gọn A ( Phải tìm TXĐ)b,...
Đọc tiếp

1,

a, Rút gon biểu thức: \(B=\frac{x^3-y^3-z^3-3xyz}{\left(x+y\right)^2+\left(y-z\right)^2+\left(x+z\right)^2}\)

b, Tìm số dư của phép chia A cho B. Biết:

\(A=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+9\)

\(B=\left(x^2+8x+1\right)\)

c, Tìm x là số nguyên tố sao cho: \(\left(x^3-2x^2+7x-7\right)chiah\text{ế}t\left(x^2+3\right)\)

2, Cho biểu thức: \(A=\left(\frac{1-x^3}{1-x}+x\right)\left(\frac{1+x^3}{1+x}-x\right)\)

a, Rút gọn A ( Phải tìm TXĐ)

b, Tìm x để A = 64

3,

a, Rút gọn biểu thức: \(M=75\left(4^{2016}+4^{2015}+........+4+1\right)+25\)

b, Tìm x biết: \(x^4-30x^2+31x-30=0\)

c, Tìm x, y là các số nguyên tố để \(x^2+45=y^2\)

4, Cho tam giác ABC vuông tại A (AC > AB) đường cao AH. Trên tia HC lấy điểm D sao cho HD = HA. Đường vuông góc với BC ại D cắt AC tại E

a, CMR: AE = AB    (gợi ý: Từ E kẻ EF vuông góc với AH ( F thuộc AH)

b, Gọi M là trung điểm của BE. Tính \(\widehat{AHM}\)

5, 

a, CMR: với mọi số nguyên a thì (a^3 - a) chia hết cho 6

b, Cho \(A=a_{1^3+}a_{2^3}+........+a_{n^3}\)

          \(B=\left(a_1+a_2+.......+a_n\right)^3\)

CMR: A chia hết cho 6 thì B chia hết cho 6

0
1 tháng 3 2020
https://i.imgur.com/zDaI8UO.jpg
1 tháng 3 2020

Bài 1 :

Xét hiệu :

\(\frac{a^2+b^2+c^2}{3}-\left(\frac{a+b+c}{3}\right)^2\)

\(=\frac{a^2+b^2+c^2}{3}-\frac{\left(a+b+c\right)^2}{9}\)

\(=\frac{3\left(a^2+b^2+c^2\right)}{9}-\frac{a^2+b^2+c^2+2ab+2bc+2ac}{9}\)

\(=\frac{1}{9}\left[3\left(a^2+b^2+c^2\right)-a^2-b^2-c^2-2ab-2bc-2ac\right]\)

\(=\frac{1}{9}\left(3a^2+3b^2+3c^2-a^2-b^2-c^2-2ab-2bc-2ac\right)\)

\(=\frac{1}{9}\left(2a^2+2b^2+2c^2-2ab-2bc-2ac\right)\)

\(=\frac{1}{9}\left[\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)\right]\)

\(=\frac{1}{9}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\)

Vậy \(\frac{a^2+b^2+c^2}{3}\ge\left(\frac{a+b+c}{3}\right)^2\)

Dấu " = " xay ra \(\Leftrightarrow a=b=c\)

29 tháng 11 2019

mik đag cần gấp các bn giải nhanh dùm mik nha

2 tháng 11 2017

ai trả lời nhiều tớ sẽ dùng 4 nick k cho nha cảm ơn