\(\frac{a}{a+b^4+c^4}+\frac{b}{b+c^4+a^4}+\frac{c}{c+a...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 10 2020

1.

Ta có: \(a^4+b^4\ge\frac{1}{2}\left(a^2+b^2\right)\left(a^2+b^2\right)\ge ab\left(a^2+b^2\right)\)

\(\Rightarrow VT\le\frac{a}{a+bc\left(b^2+c^2\right)}+\frac{b}{b+ca\left(c^2+a^2\right)}+\frac{c}{c+ab\left(a^2+b^2\right)}\)

\(\Rightarrow VT\le\frac{a^2}{a^2+abc\left(b^2+c^2\right)}+\frac{b^2}{b^2+abc\left(a^2+c^2\right)}+\frac{c^2}{c^2+abc\left(a^2+b^2\right)}\)

\(\Rightarrow VT\le\frac{a^2}{a^2+b^2+c^2}+\frac{b^2}{a^2+b^2+c^2}+\frac{c^2}{a^2+b^2+c^2}=1\)

Dấu "=" xảy ra khi \(a=b=c=1\)

6 tháng 10 2020

Mình xem phép làm câu 1 ạ. 

Đề là?

\(\frac{1}{a}+\frac{1}{c}=\frac{2}{b}\)(1)

Chứng minh tương đương 

\(\frac{a+b}{2a-b}+\frac{c+b}{2c-b}\ge4\)<=> 12ac - 9bc  - 9ab + 6b2 \(\le\)0 ( quy đồng )  (2)

Từ (1) <=> 2ac = ab + bc  Thay vào (2) <=> 6ab + 6bc - 9bc  - 9ab + 6b2  \(\le\)

<=> a + c \(\ge\)2b 

Từ (1) => \(\frac{2}{b}=\frac{1}{a}+\frac{1}{c}\ge\frac{4}{a+c}\)

=> a + c \(\ge\)2b đúng => BĐT ban đầu đúng

Dấu "=" xảy ra <=> a = c = b

 
10 tháng 10 2016

e ơi e nên tải tài liệu của võ quốc bá cẩn đi 

6 tháng 9 2019

Bài 1:Cách thông thường nhất là sos hoặc cauchy-Schwarz nhưng thôi ko làm:v Thử cách này cho nó mới dù rằng ko chắc

Giả sử \(a\ge b\ge c\Rightarrow c\le1\Rightarrow a+b=3-c\ge2\) và \(a\ge1\)

Ta có \(LHS=a^3.a+b^3.b+c^3.c\) 

\(=\left(a^3-b^3\right)a+\left(b^3-c^3\right)\left(a+b\right)+c^3\left(a+b+c\right)\)

\(\ge\left(a^3-b^3\right).1+\left(b^3-c^3\right).2+3c^3\)

\(=a^3+b^3+c^3=RHS\)

Đẳng thức xảy ra khi a = b = c = 1

6 tháng 9 2019

Bài 2:

\(BĐT\Leftrightarrow\frac{c^2}{a^2+b^2}+\frac{a^2}{b^2+c^2}+\frac{b^2}{c^2+a^2}\le\frac{a^3+b^3+c^3}{2abc}\)

Đến đây bớt 3/2 ở mỗi vế rồi dùng sos xem sao? Giờ phải ăn cơm đi học rồi, chiều về làm, ko được sẽ nghĩ cách khác.

11 tháng 4 2017

Ta có:

\(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{16}{2a+b+c}\)(1)

Tương tự ta có:

\(\hept{\begin{cases}\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}\ge\frac{16}{a+2b+c}\left(2\right)\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\ge\frac{16}{a+b+2c}\left(3\right)\end{cases}}\)

Cộng (1), (2), (3) vế theo vế ta được

\(16\left(\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\right)\le4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=16\)

\(\Leftrightarrow\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\le1\)

29 tháng 3 2022

Dự đoán dấu "=" xảy ra khi \(a=b=c=1\)

Khi đó \(\frac{a^4}{b+2}=\frac{1}{3}\)

Ta cần ghép \(\frac{a^4}{b+2}\)với hạng tử \(k\left(b+2\right)\)thỏa mãn khi Cô-si thì dấu "=" xảy ra khi \(a=b=1\)

Lại có \(b+2=3\)

Đồng thời khi Cô-si dấu "=" xảy ra khi \(\frac{a^4}{b+2}=k\left(b+2\right)\)hay \(\frac{1}{3}=k.3\)\(\Leftrightarrow k=\frac{1}{9}\)

Áp dụng BĐT Cô-si cho 2 số dương \(\frac{a^4}{b+2}\)và \(\frac{b+2}{9}\), ta có:

\(\frac{a^4}{b+2}+\text{​​}\frac{b+2}{9}\ge2\sqrt{\frac{a^4}{b+2}.\frac{b+2}{9}}=\frac{2a^2}{3}\)

Tương tự, ta có \(\frac{b^4}{c+2}+\text{​​}\frac{c+2}{9}\ge2\sqrt{\frac{b^4}{c+2}.\frac{c+2}{9}}=\frac{2b^2}{3}\)và 

\(\frac{c^4}{a+2}+\text{​​}\frac{a+2}{9}\ge2\sqrt{\frac{c^4}{a+2}.\frac{a+2}{9}}=\frac{2c^2}{3}\)

CỘng vế theo vế từng BĐT, ta được \(P+\frac{a+2+b+2+c+2}{9}\ge\frac{2\left(a^2+b^2+c^2\right)}{3}\)

\(\Leftrightarrow P+\frac{\left(a+b+c\right)+6}{9}\ge2\)(vì \(a^2+b^2+c^2=3\)\(\Leftrightarrow P\ge2-\frac{\left(a+b+c\right)+6}{9}\)(1)

Ta chứng minh BĐT phụ \(a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}\)(với \(a,b,c>0\))

Thật vậy, BĐT này \(\Leftrightarrow\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca\le3a^2+3b^2+3c^2\)\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\)\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(luôn đúng)

Vậy BĐT phụ được chứng minh \(\Rightarrow a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}=\sqrt{3.3}=3\)(2)

Từ (1) và (2) \(\Rightarrow P\ge2-\frac{3+6}{9}=1\)\(\Rightarrow min_P=1\)

Dấu "=" xảy ra khi \(a=b=c=1\)

29 tháng 3 2022

t ko bic

22 tháng 1 2018

đề đúng hay sai vậy

22 tháng 1 2018

Đề đúng bạn ơi