K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 6 2019

1. Theo Cô si:
\(\frac{1}{a^2}+\frac{1}{b^2}\ge2\sqrt{\frac{1}{a^2b^2}}=2\cdot\frac{1}{ab}=\frac{2}{ab}\)

Dấu "=" khi a = b

2.

\(gt\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=6\)

\(\left(\frac{1}{a},\frac{1}{b},\frac{1}{c}\right)\rightarrow\left(x,y,z\right)\)\(\Rightarrow\left\{{}\begin{matrix}P=x^2+y^2+z^2\\x+y+z+xy+yz+zx=6\end{matrix}\right.\)

Theo Cô si ta có:

\(x^2+1\ge2\sqrt{x^2}=2x\)

Tương tự ta được: \(\left(x^2+y^2+z^2\right)+3\ge2\left(x+y+z\right)\)(1)

Lại có: \(x^2+y^2+z^2\ge xy+yz+zx\)

\(\Rightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\)(2)

Cộng (1), (2) theo vế ta được:

\(3P+3\ge2\left(x+y+z+xy+yz+zx\right)=12\)

\(\Rightarrow3P\ge9\Leftrightarrow P\ge3\)

Dấu "=" khi x = y = z = 1 hay a = b = c = 1