Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^3+6=-3a-2a^2\)
\(\Leftrightarrow a^3+2a^2+6+3a=0\)
\(\Leftrightarrow a^2\left(a+2\right)+3\left(a+2\right)=0\)
\(\Leftrightarrow\left(a+2\right)\left(a^2+3\right)=0\)
\(\Leftrightarrow a+2=0\left(do.a^2+3>0\right)\)
<=>a=-2
thay a=-2 vào biểu thức ta được \(A=\frac{-2-1}{-2+3}=\frac{-3}{1}=-3\)
Ta có : a3+6=-3a-2a2
<=> a3+6+3a+2a2=0
<=>(a3+2a2)+(3a+6)=0
<=>a2(a+2)+3(a+2)=0
<=>(a2+3)(a+2)=0
\(\hept{\begin{cases}a^2+3=0\\a+2=0\end{cases}\Leftrightarrow\hept{\begin{cases}a^2=-3\\a=-2\end{cases}\Leftrightarrow}\hept{\begin{cases}a\in\varnothing\\a=-2\end{cases}}}\)
Thay a=-2 vào biểu thức :
=> A= \(\frac{-2-2}{-2+3}=\frac{-4}{1}=-4\)
a) Gợi ý: a 2 − 5 a + 4 = ( a − 1 ) ( a − 4 ) ; a 2 + 3 a − 4 = ( a − 1 ) ( a + 4 )
Ta rút gọn được A = a + 1 a − 4
b) Thay a = 5 vào biểu thức A tìm được A = 6
c) Ta biến đổi A = a + 1 a − 4 = 1 + 5 a − 4
⇒ A ∈ ℤ ⇒ a ∈ − 1 ; 3 ; 5 ; 9
a) a ≠ ± 4 3 b) a ≠ 3
c) a ≠ 0, a ≠ - 3 2 d) a ≠ 0, a ≠ 1, a ≠ 3
a) Ta có: \(\dfrac{P}{x+2}=\dfrac{x^2+5x+6}{x^2+4x+4}\)
\(\Leftrightarrow\dfrac{P}{x+2}=\dfrac{\left(x+2\right)\left(x+3\right)}{\left(x+2\right)^2}=\dfrac{x+3}{x+2}\)
hay P=x+3