Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(A=\left(-2\dfrac{1}{5}xy^2\right)^2.\left(-xy^2\right)\left(\dfrac{1}{3}x^5y^7\right)^0\)
\(=\left(\dfrac{-11}{5}xy^2\right)^2.\left(-xy^2\right)\)
\(=\dfrac{-121}{25}x^2y^4.x.y^2\)
\(=\dfrac{-121}{25}x^3y^6\)
\(\Rightarrow\) Bậc của A là: \(9.\)
b) Ta có: \(\dfrac{-121}{25}x^3y^6\le0\)
\(\Rightarrow x^3y^6\le0\)
\(\Rightarrow x^3\le0\)
Vậy \(x^3\le0.\)
a) A=(\(\dfrac{-11}{5}\)x2y4).(-xy2).1
A=(\(\dfrac{-11}{5}\).-1).(x2.x).(y4.y2)
A=\(\dfrac{11}{5}\)x3y6
Bậc của đơn thức này là 9
b) Ta thấy : y6\(\ge\)0
\(\Rightarrow\)\(\dfrac{11}{5}\)y6\(\ge\)0
\(\Rightarrow\) để đơn thức A có giá trị nhỏ hơn hoặc bằng 0 thì x3 phải có giá trị nhỏ hơn hoặc bằng 0
\(\Rightarrow\)x\(\le\)0 thì đơn thức A có giá trị nhỏ hơn hoặc bằng 0
\(b+c=a\Rightarrow b+c-a=0\Leftrightarrow2b+2c-2a=0\)
Ta có:
\(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{\left(\frac{1}{b}+\frac{1}{c}-\frac{1}{a}\right)^2-\frac{2}{bc}+\frac{2}{ab}+\frac{2}{ac}}\)
\(=\sqrt{\left(\frac{1}{b}+\frac{1}{c}-\frac{1}{a}\right)^2+\frac{2c+2b-2a}{abc}}=\sqrt{\left(\frac{1}{b}+\frac{1}{c}-\frac{1}{a}\right)^2}=\left|\frac{1}{b}+\frac{1}{c}-\frac{1}{a}\right|\)là số hữu tỉ (đpcm)
a ) \(N=\left(x+1\right)^2+\left(y-\sqrt{2}^2\right)+2008\ge0+0+2008=2008\)
=> MinN đạt được bằng 2008 khi
\(\left\{{}\begin{matrix}x=-1\\y=\sqrt{2}\end{matrix}\right.\)
Thay vào M ,ta có
\(3x+\dfrac{x^2-y^2}{x^2+1}=-3+\dfrac{9-2}{1+1}=-3+3,5=0,5\)
b) Với x , y dương , ta được ngay ĐPCM
Với x âm , y âm , ta cũng được ĐPCM
Vậy nên xét trường hợp x,y trái dấu
\(2x^4y^2\ge0\)
\(7x^3y^5\le0\)
\(\Rightarrow2x^4y^2-7x^3y^5\ge0\) ( ĐPCM)
c)
\(2^{x+1}+2^{x+4}+2^{x+5}=2^5\cdot5^2\)
\(\Rightarrow2^{x+1}\left(1+2^3+2^4\right)=2^5\cdot5^2\)
\(\Rightarrow2^{x+1}\cdot5^2=2^5\cdot5^2\)
\(\Rightarrow2^{x+1}=2^5\Rightarrow x=4\)
1,
Ta có; \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}}\)
\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}\)
........
\(\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}\)
Cộng các vế ta được:
\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}=\frac{100}{\sqrt{100}}=10\) (đpcm)
2,Câu hỏi của Nguyễn Như Quỳnh - Toán lớp 7 | Học trực tuyến
3,
3n+2-2n+2+3n-2n
= 3n.32-2n.22+3n-2n
= 3n(9 + 1) - 2n(4 + 1)
= 3n.10 - 2n.5
= 3n.10 - 2n-1.10
= 10(3n - 2n-1) chia hết cho 10
a: \(\Leftrightarrow11x^3+11x^2-6x^2-6x+10x+10=0\)
\(\Leftrightarrow\left(x+1\right)\left(11x^2-6x+10\right)=0\)
=>x=-1
c: \(\Leftrightarrow x^2\left(\sqrt{5}-1\right)-x\sqrt{5}+1=0\)
\(a=\sqrt{5}-1;b=-\sqrt{5};c=1\)
Vì a+b+c=0 nên pt có hai nghiệm là:
\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{1}{\sqrt{5}-1}=\dfrac{\sqrt{5}+1}{4}\)
d: Ta có: \(x^2\left(1+\sqrt{3}\right)+x-\sqrt{3}=0\)
\(a=1+\sqrt{3};b=1;c=-\sqrt{3}\)
Vì a-b+c=0 nên phương trình có hai nghiệm là:
\(x_1=-1;x_2=\dfrac{\sqrt{3}}{\sqrt{3}+1}\)
Đặt \(\dfrac{x}{a}\) = \(\dfrac{y}{b}\) = \(\dfrac{z}{c}\) = k \(\Rightarrow\)x=ak;y=bk ; z=ck.
(x+y+z)2=(ak+bk+ ck)2=[k(a+b+c)]2=
k2(a+b+c)2=k2(vì a+b+c=1nên(a+b+c)2=1)(1)
x2+y2+z2=(ka)2+(kb)2+(kc)2=k2a2+k2b2+k2b2
=k2(a2+b2+c2)=k2 (vì a2+b2+c2=1) (2)
Từ (1) và (2), \(\Rightarrow\) (x+y+z)2=x2+y2+z2=k2
a) Vừa nhìn đề biết ngay sai
Sửa đề:
Chứng minh: \(P\left(-1\right).P\left(-2\right)\le0\)
Giải:
Ta có:
\(P\left(x\right)=ax^2+bx+c\)
\(\Rightarrow\left\{{}\begin{matrix}P\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c\\P\left(-2\right)=a.\left(-2\right)^2+b.\left(-2\right)+c\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}P\left(-1\right)=a-b+c\\P\left(-2\right)=4a-2b+c\end{matrix}\right.\)
\(\Rightarrow P\left(-1\right)+P\left(-2\right)=\left(a-b+c\right)+\left(4a-2b+c\right)\)
\(=\left(a+4a\right)-\left(b+2b\right)+\left(c+c\right)\)
\(=5a-3b+2c=0\)
\(\Rightarrow P\left(-1\right)=-P\left(-2\right)\)
\(\Rightarrow P\left(-1\right).P\left(-2\right)=-P^2\left(-2\right)\le0\) vì \(P^2\left(-2\right)\ge0\)
Vậy nếu \(5a-3b+2c=0\) thì \(P\left(-1\right).P\left(-2\right)\le0\)
b) Giải:
Từ giả thiết suy ra:
\(\left\{{}\begin{matrix}b^2=ac\\c^2=bd\end{matrix}\right.\)\(\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)
Ta có:
\(\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}\left(1\right)\)
Lại có:
\(\dfrac{a^3}{b^3}=\dfrac{a}{b}.\dfrac{a}{b}.\dfrac{a}{b}=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\dfrac{a.b.c}{b.c.d}=\dfrac{a}{d}\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\)
\(\Rightarrow\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=\dfrac{a}{d}\) (Đpcm)
a) Có P(1) = a.\(1^2\)+b.1+c = a+b+c
P(2) = a.\(2^2\)+b.2+c = 4a+2b+c
=>P(1)+P(2) = a+b+c+4a+2b+c = 5a+3b+2c = 0
<=>\(\left[{}\begin{matrix}P\left(1\right)=P\left(2\right)=0\\P\left(1\right)=-P\left(2\right)\end{matrix}\right.\)
Nếu P(1) = P(2) => P(1).P(2) = 0
Nếu P(1) = -P(2) => P(1).P(2) < 0
Vậy P(1).P(2)\(\le\)0
b) Từ \(b^2=ac\) =>\(\dfrac{a}{b}=\dfrac{b}{c}\) (1)
\(c^2=bd\) =>\(\dfrac{b}{c}=\dfrac{c}{d}\) (2)
Từ (1) và (2) => \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có
a)\(\sqrt{7-x=x-1}\)
\(\Rightarrow7-x=x-1\)
\(\Rightarrow7+1=x+x\)
\(\Rightarrow8=2x\)
\(\Rightarrow x=8:2=4\)
Vậy x=4
Do m2+n2=1
\(=>m^2+n^2+1^2=2\)
Áp dụng bất đẳng thức Bunyacopsky cho 2 bộ số ta có:
\(=>\left(a^2+b^2+c^2\right)\left(m^2+n^2+1^2\right)\ge\left(am+bn+c.1\right)^2\)
\(=>\sqrt{\left(a^2+b^2+c^2\right)\left(m^2+n^2+1^2\right)}\ge\sqrt{\left(am+bn+c\right)^2}\)
Mà : \(m^2+n^2+1=2;a^2+b^2+c^2=1\)
\(=>\sqrt{2}\ge\)/am+bn+c/ (lấy trị tuyệt đối vì căn bình phương là 1 số dương);;
=> /am+bn+c/ \(\le\sqrt{2}\)
CHÚC EM HỌC TỐT..... anh đang bận lắm