K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Vì a là số lẻ nên a không chia hết cho 2;4;8

Gọi d là ƯCLN(a;ab+8)(Điều kiện: d≠0)

⇔a⋮d và ab+8⋮d;

⇔ab⋮d và ab+8⋮d;

⇔ab-ab-8⋮d

⇔-8⋮d

⇔d∈Ư(-8)

⇔d∈{1;-1;2;-2;4;-4;8;-8}

mà d∉{2;-2;4;-4;8;-8}(Do a là số lẻ nên a không chia hết cho 2;4;8)

nên d=1

hay ƯCLN(a;ab+8)=1

Vậy: a và ab+8 là hai số nguyên tố cùng nhau(đpcm)

AH
Akai Haruma
Giáo viên
19 tháng 7

Lời giải:
Gọi $d=ƯCLN(a,ab+16)$

$\Rightarrow a\vdots d; ab+16\vdots d$

$\Rightarrow 16\vdots d$

$\Rightarrow d\in \left\{1; 2; 4; 8; 16\right\}$

Vì $a\vdots d; a$ là số lẻ nên $d$ lẻ.

$\Rightarrow d=1$

Vậy $ƯCLN(a,ab+16)=1$ hay $a,ab+16$ là hai số nguyên tố cùng nhau.

2 tháng 2 2017

Giả sử a và ab +  4 cùng chia hết cho số tự nhiên d ( d khác 0 ) 

Như vậy thì ab chia hết cho d , do đó hiệu ( ab + 4 ) - ab = 4 cũng chia hết cho d

=> d = { 1 ; 2 ; 4 }

Nhưng đầu bài đã nói a là 1 số tự nhiên lẻ => a và ab + 4 là các số nguyên tố cùng nhau 

 Gọi k là ước số của a và ab+4 
Do a lẻ => k lẻ 
Ta có:

      ab+4=kp (1) 
      a=kq (2) 
Thay (2) vào (1) 
=> kqb+4 =kp 
=> k(p-qb)=4 
=> p-qb =4/k 
do p-qb nguyên => k là ước lẻ của 4 => k=1 
Vậy a và ab+4 nguyên tố cùng nhau

13 tháng 2 2019

Bạn tìm trên mạng rồi vào câu hỏi của Messi ấy.

Có một bạn trả lời mà được Online Math lựa chọn luôn đó.

28 tháng 5 2015

Giải : giả sử a và ab + 4 cùng chia hết cho một số tự nhiên d ( d khác 0 )

Như vậy thì ab chia hết d , do đó hiệu ( ab + 4 ) - ab=4 cũng chia hết cho d 

=> d có thể bằng 1,2,4 . Nhưng a không chia hết cho 2 và 4 vì là số lẻ . Vậy d chỉ có thể bằng 1 nên các số a và ab + 4 nguyên tố cùng nhau **** bạn

28 tháng 5 2015

  Gọi k là ước số của a và ab+4 
Do a lẻ => k lẻ 
Ta biểu diễn: 
{ab+4=kp (1) 
{a=kq (2) 
Thay (2) vào (1) 
=> kqb+4 =kp 
=> k(p-qb)=4 
=> p-qb =4/k 
do p-qb nguyên => k là ước lẻ của 4 => k=1 

Vậy a và ab+4 nguyên tố cùng nhau

5 tháng 12 2016

mình giải rồi không thấy ý kiến gì?

7 tháng 12 2017

1. Nhận xét rằng a là số tự nhiên lẻ và ab + 4 là một số chẵn.
Nếu d là một ước chung của a và ab + 4 ( d > 1), thì do a lẻ nên d phải là số lẻ.
Do ab chia hết cho d nên 4 chia hết cho d, suy ra d  \(\in\) { 2; 4 }.  (mâu thuẫn)..
b) Gọi d là ước chung lớn nhất của n + 2 và 3n + 11.
Suy ra \(\hept{\begin{cases}n+2⋮d\\3n+11⋮d\end{cases}\Rightarrow\hept{\begin{cases}3n+6⋮d\\3n+11⋮d\end{cases}}}\).
Suy ra \(3n+11-\left(3n+6\right)=5⋮d\)
Vì vậy d  = 1 hoặc d = 5.
Để n + 2 và 3n + 11 là hai số nguyên tố cùng nhau thì d = 1.
Nếu giả sử ngược lại \(\hept{\begin{cases}n+2⋮5\\3n+11⋮5\end{cases}}\) \(\Leftrightarrow n+2⋮5\).
Suy ra \(n\) chia 5 dư 3 hay n = 5k + 3.
Vậy để n + 2 và 3n + 11 là hai số nguyên tố cùng nhau, thì n chia cho 5 dư 0, 1, 2, 4 hay n = 5k, n = 5k +1, n = 5k + 2, n = 5k + 4.