\(a^2-1\) chia hết cho 24.<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2022

Bài 1:

A=(a+1)(a-1)=(2k+1-1)(2k+1+1)=(2k+2)*2k=4k(k+1) chia hết cho 8

a là số nguyên tố lớn hơn 3 nên a=3k+1 hoặc a=3k+2

TH1: a=3k+1

\(A=a^2-1=\left(3k+1\right)^2-1=\left(3k+1+1\right)\left(3k+1-1\right)\)

\(=3k\left(3k+2\right)⋮3\)(1)

TH2: a=3k+2

\(A=\left(3k+2\right)^2-1=\left(3k+2+1\right)\left(3k+2-1\right)=3\left(k+1\right)\left(3k+1\right)⋮3\)(2)

Từ (1) và (2) suy ra A chia hết cho 3

mà A chia hết cho 8

nên A chia hết cho 24

 

12 tháng 6 2016

Gọi: \(A=n^2+4\)và \(B=n^2+16\)

Ta có: \(A=n^2+4=n^2-1+5=\left(n-1\right)\left(n+1\right)+5\)(1)

và \(B=n^2+16=n^2-4+20=\left(n-2\right)\left(n+2\right)+20\)(2)

Vì A;B là số nguyên tố nên từ (1) và (2) suy ra: \(\left(n-1\right)\left(n+1\right)\)và \(\left(n-2\right)\left(n+2\right)\)không chia hết cho 5. 

Mặt khác, tích của 5 số tự nhiên liên tiếp: \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)phải chia hết cho 5. 

Suy ra n chia hết cho 5. ĐPCM.

5 tháng 11 2017

   

a) 9x2 - 36

=(3x)2-62

=(3x-6)(3x+6)

=4(x-3)(x+3)

b) 2x3y-4x2y2+2xy3

=2xy(x2-2xy+y2)

=2xy(x-y)2

c) ab - b2-a+b

=ab-a-b2+b

=(ab-a)-(b2-b)

=a(b-1)-b(b-1)

=(b-1)(a-b)

P/s đùng để ý đến câu trả lời của mình

5 tháng 6 2017

xét 2 th

th1)\(n⋮11\)

\(=>\left(n+14\right)\left(n+3\right)không⋮11=>\left(n+14\right)\left(n+3\right)+22không⋮11=>không⋮121.\)

th2)\(nkhông⋮11\)

\(\left(n+14\right)\left(n+3\right)+22=n^2+17n+42+22=\left(n^2+6n+9\right)+11n+55=\left(n+3\right)^2+11n+5.\)

nếu \(\left(n+3\right)⋮11=>\left(n+3\right)^2⋮121\)

khi đó n chia 11 dư 8=>11n+55 chia 121 dư 22 =>đpcm

nếu \(\left(n+3\right)^2không⋮11=>đpcm\)

26 tháng 9 2016

\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=\frac{\left(xy+yz+zx\right)^2}{x^2y^2z^2}\)(1) với x+y+z=0. Bạn quy đồng vế trái (1) dc \(\frac{x^2y^2+y^2z^2+z^2x^2}{x^2y^2z^2}=\frac{\left(xy+yz+zx\right)^2-2\left(x+y+z\right)xyz}{x^2y^2z^2}\)