K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2018

\(ab+bc+ca\le a^2+b^2+c^2\le\frac{\left(a+b+c\right)^2}{3}\) ( bđt phụ + Cauchy-Schwarz dạng Engel ) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c\)

CM bđt phụ : \(x^2+y^2+z^2\ge xy+yz+zx\)

\(\Leftrightarrow\)\(2x^2+2y^2+2z^2\ge2xy+2yz+2zx\)

\(\Leftrightarrow\)\(2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)

\(\Leftrightarrow\)\(\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)\ge0\)

\(\Leftrightarrow\)\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\) ( luôn đúng ) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z\)

Chúc bạn học tốt ~ 

2 tháng 6 2016

mk ko bit

mik tính ko ra

11 tháng 2 2020

Cho a, b, c mà bắt chứng minh x, y, z nên ko chứng minh đc là đúng òi:)

\(VT-VP=\Sigma_{cyc}\frac{\left(x-y\right)^4}{4xy\left(x^2+y^2\right)}\ge0\)

a,b,c??? chỗ nào vậy bé ?? :)))

20 tháng 10 2020

1111111111111111111

\(VT=\Sigma\frac{xy+yz+zx}{xy}=3+\Sigma\frac{z\left(x+y\right)}{xy}\)

Đến đây để ý \(\frac{1}{2}\left[\frac{z\left(x+y\right)}{xy}+\frac{y\left(z+x\right)}{zx}\right]\ge\sqrt{\frac{\left(z+x\right)\left(x+y\right)}{x^2}}\left(\text{AM - GM}\right)\)

Là xong.

1 tháng 5 2019

1) Ta có ĐK: 0 < a,b,c < 1

\(\sqrt{\frac{a}{1-a}}=\frac{a}{\sqrt{a\left(1-a\right)}}\ge2a\) (BĐT AM-GM cho 2 số a và 1-a)

Tương tự, ta có \(\sqrt{\frac{b}{1-b}}=\frac{b}{\sqrt{b\left(1-b\right)}}\ge2b\)\(\sqrt{\frac{c}{1-c}}=\frac{c}{\sqrt{c\left(1-c\right)}}\ge2c\)

\(\sqrt{\frac{a}{1-a}}+\sqrt{\frac{b}{1-b}}+\sqrt{\frac{c}{1-c}}\ge2\left(a+b+c\right)=2\)(do a+b+c=1)

Dấu đẳng thức xảy ra \(\Leftrightarrow\) a = b = c = \(\frac{1}{2}\) (không thoả mãn điều kiện a+b+c=1)

Dấu đẳng thức trên không xảy ra được. Vậy ta có bất đẳng thức\(\sqrt{\frac{a}{1-a}}+\sqrt{\frac{b}{1-b}}+\sqrt{\frac{c}{1-c}}>2\)

24 tháng 5 2017

dang tung cau 1 thoi bn