Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Xét rằng x > 7 <=> A < 0
Lại xét x < 7 thì mẫu là một số nguyên dương. P/s A có tử và mẫu đều là số dương, mà tử lại bất biến
A(max) <=> mẫu 7 - x nhỏ nhất <=> 7 - x = 1 => x = 7 - 1 = 6 <=> A = 1
Từ những điều trên thì A sẽ có GTLN khi và chỉ khi x = 6
1
Áp dụng tính chất dãy tỉ số bằng nhau
`=>a/(b+c)=c/(a+b)=b/(a+c)=(a+b+c)/(2a+2b+2c)=1/2`
`=>b+c=2a`
`=>a+b+c=3a`
Hoàn toàn tương tự:
`a+b+c=3b`
`a+b+c=3c`
`=>a=b=c`
`=>A=1/2+1/2+1/2=3/2`
2
`A in Z`
`=>x+3 vdots x-2`
`=>x-2+5 vdots x-2`
`=>5 vdots x-2`
`=>x-2 in Ư(5)={1,-1,5,-5}`
`+)x-2=1=>x=3(TM)`
`+)x-2=-1=>x=1(TM)`
`+)x-2=5=>x=7(TM)`
`+)x-2=-5=>x=-3(TM)`
Vậy với `x in {1,3,-3,7}` thì `A in Z`
`A in Z`
`=>1-2x vdots x+3`
`=>-2(x+3)+1+6 vdots x+3`
`=>7 vdots x+3`
`=>x+3 in Ư(7)={1,-1,7,-7}`
`+)x+3=1=>x=-2(TM)`
`+)x+3=-1=>x=-4(TM)`
`+)x+3=-7=>x=-10(TM)`
`+)x+3=7=>x=4(TM)`
Vậy `x in {2,-4,4,10}` thì `A in Z`
a, A = \(\dfrac{12x-2}{4x+1}\)
2\(x\) - 4 = 0 ⇒ 2\(x\) = 4 ⇒ \(x\) = 4: 2 = 2
Giá trị của A tại 2\(x\) - 4 = 0 là giá trị của A tại \(x\) = 2
A = \(\dfrac{12\times2-2}{4\times2+1}\) = \(\dfrac{22}{9}\)
b, A = 1 \(\Leftrightarrow\) \(\dfrac{12x-2}{4x+1}\) = 1
12\(x\) - 2 = 4\(x\) + 1
12\(x\) - 4\(x\) = 1 + 2
8\(x\) = 3
\(x\) = \(\dfrac{3}{8}\)
c, A \(\in\) Z ⇔ 12\(x\) - 2 ⋮ 4\(x\) + 1
12\(x\) + 3 - 5 ⋮ 4\(x\) + 1
3.(4\(x\) + 1) - 5 ⋮ 4\(x\) + 1
5 ⋮ 4\(x\) + 1
Ư(5) ={-5; -1; 1; 5}
Lập bảng ta có:
\(4x+1\) | -5 | -1 | 1 | 5 |
\(x\) | -3/2 | -1/2 | 0 | 1 |
Vậy \(x\) \(\in\) {0; 1}
a: \(M=A+B=x^3-2x^2+1+2x^2-1=x^3\)
b: Thay x=1/2 vào M, ta được: \(M=\left(\dfrac{1}{2}\right)^3=\dfrac{1}{8}\)
c: Để M=0 thì x3=0
hay x=0
Bài 4:
a: Để C là số nguyên thì \(2x+4-5⋮x+2\)
\(\Leftrightarrow x+2\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{-1;-3;3;-7\right\}\)
b: Để D là số nguyên thì \(x^2-2x+1⋮x+1\)
\(\Leftrightarrow x^2+x-3x-3+4⋮x+1\)
\(\Leftrightarrow x+1\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(x\in\left\{0;-2;1;-3;3;-5\right\}\)
c: Để C và D cùng là số nguyên thì \(x\in\left\{-3;3\right\}\)
a: \(A=31x^2y^3-2xy^3+\dfrac{1}{4}x^2y^2+2\)
\(B=2xy^3+\dfrac{3}{4}x^2y^2-31x^2y^3-x^2-5\)
P=\(A+B=x^2y^2-x^2-3\)
\(A-B=62x^2y^3-4xy^3-\dfrac{1}{2}x^2y^2+x^2+7\)
b: Khi x=6 và y=-1/3 thì \(P=\left(6\cdot\dfrac{-1}{3}\right)^2-6^2-3=4-36-3=1-36=-35\)
Bài 2:
a: Để B=1 thì \(2x^2+1=4\)
\(\Leftrightarrow x^2=\dfrac{3}{2}\)
hay \(x=\pm\dfrac{\sqrt{6}}{2}\)
b: Để B là số nguyên thì \(2x^2+1\inƯ\left(4\right)\)
\(\Leftrightarrow2x^2+1\in\left\{1;2;4\right\}\)
hay \(x\in\left\{0;\dfrac{\sqrt{2}}{2};-\dfrac{\sqrt{2}}{2};-\dfrac{\sqrt{6}}{2};\dfrac{\sqrt{6}}{2}\right\}\)