\(\Delta\) đều ABC và \(A'B'C'\) có 2 đg cao AH...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2017

Bài 1: Dễ

Bài 2: a sai đề.

Đợi em tắm đã rùi làm nha :)

10 tháng 7 2017

Bài 1:

A' B' C' A B C H H'

Xét tam giác ABC và tam giác A'B'C' đều ta có:

\(\widehat{ABC}=\widehat{A'B'C'}=60^o\)(theo tính chất của tam giác đều)

\(\Rightarrow\widehat{HAB}=\widehat{H'A'B'}\)

Xét tam giác \(ABH\) và tam giác \(A'B'H'\) ta có:

\(\widehat{AHB}=\widehat{A'H'B'}\left(=90^o\right);AH=A'H'\left(gt\right);\widehat{HAB}=\widehat{H'A'B'}\left(cmt\right)\)

Do đó tam giác ABH= tam giác A'B'H'(g.c.g)

=> AB=A'B'=> AB=AC=CB=A'B'=A'C'=B'C'(theo tính chất của tam giác đều)

Xét tam giác ABC và tam giác A'B'C' ta có:

\(AB=A'B'\left(cmt\right);\widehat{ABC}=\widehat{A'B'C'}\left(=60^o\right);BC=B'C'\left(cmt\right)\)

Do đó tam giác ABC= tam giác A'B'C'(c.g.c)(đpcm)

Xong =))

Câu 1: 

a: Xét ΔABE vuông tại A và ΔHBE vuông tại H có

BE chung

góc ABE=góc HBE

Do đo: ΔABE=ΔHBE

b: Ta có:BA=BH

EA=EH
Do đó:BE là đường trung trực của AH

c: Ta có: EA=EH

mà EH<EC

nên EA<EC

a: Xét ΔCAM có CA=CM

nen ΔCAM cân tại C

=>\(\widehat{CAM}=\widehat{CMA}\)

b: \(\widehat{CAM}+\widehat{MAN}=90^0\)

nên \(\widehat{CMA}+\widehat{MAN}=90^0\)

c: Ta có: \(\widehat{CMA}+\widehat{MAN}=90^0\)

\(\widehat{CAM}+\widehat{BAM}=90^0\)

mà \(\widehat{CAM}=\widehat{CMA}\)

nên \(\widehat{MAN}=\widehat{HAM}\)

hay AM là tia phân giác của góc BAH

d: Xét ΔAHM và ΔANM có

AH=AN

\(\widehat{HAM}=\widehat{NAM}\)

AM chung

Do đó: ΔAHM=ΔANM

Suy ra: \(\widehat{AHM}=\widehat{ANM}=90^0\)

=>MN\(\perp\)AB

26 tháng 2 2017

mình chịu

26 tháng 2 2017

bạn làm được câu nào thì làm

Bài 1: Cho \(\Delta ABC\),đường cao AH. Trên nửa mặt phẳng  bờ BC có chứa điểm A lấy 2 điểm D và E sao cho \(\Delta ABK\)và \(\Delta ACE\)vuông cân tại B và C. Trên tia đối của tia AH lấy điểm K sao cho AK=BC. Chứng minh rằng:   a) \(\Delta ABK=\Delta BDC\)   b)\(CD\perp BK\)và \(BE\perp CK\)    c) Ba đường thẳng AH, BE, CD đồng quyBài 2: Cho \(\Delta ABC\) vuông tại A. Trên cạnh AC lấy điểm D sao...
Đọc tiếp

Bài 1: Cho \(\Delta ABC\),đường cao AH. Trên nửa mặt phẳng  bờ BC có chứa điểm A lấy 2 điểm D và E sao cho \(\Delta ABK\)và \(\Delta ACE\)vuông cân tại B và C. Trên tia đối của tia AH lấy điểm K sao cho AK=BC. Chứng minh rằng:

   a) \(\Delta ABK=\Delta BDC\)

   b)\(CD\perp BK\)và \(BE\perp CK\)

    c) Ba đường thẳng AH, BE, CD đồng quy

Bài 2: Cho \(\Delta ABC\) vuông tại A. Trên cạnh AC lấy điểm D sao cho \(\widehat{ABC}=3\widehat{ABD}\),trên canh AB lấy diểm E sao cho \(\widehat{ACB}=3\widehat{ACE}\).Gọi F là giao điểm của BD và CE. I là giao điểm các đường phân giác của\(\Delta BFC\).

       a)Tính số đo \(\widehat{BFC}\)

       b)Chứng minh \(\Delta BFE=\Delta BFI\)

       c) Chứng minh IDE là tam giác đều

       d)Gọi Cx là tia đối của tia CB, M là giao điểm của FI và BC. Tia phân giác của \(\widehat{FCx}\)cắt tia BF tại K. Chứng minh MK là tia phân giác của \(\widehat{FMC}\)

      e) MK cắt CF tại điểm N. Chứng minh B, I, N thẳng hàng

0
12 tháng 5 2017

bài này làm được nhưng nhại đánh máy ra.... lên mạng mà search bạn ạ

12 tháng 5 2017

mình lên rồi nhưng ko có

a: Xét ΔABK có BK=BA

nên ΔBAK cân tại B

b: \(\widehat{BAH}+\widehat{B}=90^0\)

\(\widehat{ACB}+\widehat{B}=90^0\)

Do đó: \(\widehat{BAH}=\widehat{ACB}\)

Ta có: \(\widehat{HAK}+\widehat{BKA}=90^0\)

\(\widehat{IAK}+\widehat{BAK}=90^0\)

mà \(\widehat{BAK}=\widehat{BKA}\)

nên \(\widehat{HAK}=\widehat{IAK}\)

23 tháng 12 2018

sửa lại cái đề hộ cái,sao cho ad+ah là sao?