K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2018

169.(157-77.x)^2 + 100.(201-100.x)^2 = 26.(77.x-157).(1000.x-2010) (1)
169.(157-77.x)^2 = (13 .(157-77.x)) ^2
100.(201-100.x)^2 = ( 2010- 1000x)^2
26.(77.x-157).(1000.x-2010) = 26.(157-77.x)( 2010- 1000x)
=> (1) <=> (13 .(157-77.x)) ^2 + ( 2010- 1000x)^2 - 26.(157-77.x)( 2010- 1000x) =0
<=> [ 13(157-77.x) - ( 2010- 1000x)]^2 =0 <=> 13(157-77.x) - ( 2010- 1000x) = 0

=> 2041-1001x-2010+1000x=0=>x=31

20 tháng 6 2017

a)\(A=x^5-100x^4+100x^3-100x^2+100x-9\)

\(A=x^5-(99+1)x^4 +(99+1)x^3-(99+1)x^2+(99+1)x-9\)

Tại x=99 , ta có :

\(A=x^5 - (x+1)x^4+(x+1)x^3-(x+1)x^2+(x+1)x-9\)

\(A=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-9\)

\(A=x-9\)

Thay x = 99 vào biểu thức A ta có :

\(A=99-9=90\)

20 tháng 6 2017

a, \(A=x^5-100x^4+100x^3-100x^2+100x-9\)

\(=x^5-99x^4-x^4+99x^3+x^3-99x^2-x^2+99x+x-9\)

\(=x^4\left(x-99\right)-x^3\left(x-99\right)+x^2\left(x-99\right)-x\left(x-99\right)+x-9\)\(=\left(x^4-x^3+x^2-x\right)\left(x-99\right)+x-9\)

Thay x = 99

\(\Rightarrow A=90\)

Vậy A = 90 tại x = 99

b, \(B=x^7-26x^6+27x^5-47x^4-77x^3+50x^3+50x^2+x-24\)

\(=x^7-25x^6-x^6+25x^5+2x^5-50x^4+3x^4-75x^3-2x^3+50x^2+x-24\)

\(=x^6\left(x-25\right)-x^5\left(x-25\right)+2x^4\left(x-25\right)+3x^3\left(x-25\right)-2x^2\left(x-25\right)+x-24\)

\(=\left(x^6-x^5+2x^4+3x^3-2x^2\right)\left(x-25\right)+x-24\)

Thay x = 25

\(\Rightarrow B=1\)

Vậy B = 1 tại x = 25

15 tháng 9 2021

Giá trị của biểu thức C tại x=25 là C(25).

Theo định lý Bezout, C(25) = số dư khi chia C(x) cho x-25.

Ta dùng sơ đồ Hooc-ne để tìm số dư này:

 1-2627-47-77501-24
x=251-123-2011


Vậy: C(25)=1 

15 tháng 9 2021

làm cách khác đi

 

29 tháng 7 2020

giúp mình với mọi người

29 tháng 7 2020

Giá trị của biểu thức C tại x=25 là C(25).

Theo định lý Bezout, C(25) = số dư khi chia C(x) cho x-25.

Ta dùng sơ đồ Hooc-ne để tìm số dư này:

 1-2627-47-77501-24
x=251-123-2011


Vậy: C(25)=1  (Bạn có thể dùng máy tính kiểm tra).

NV
18 tháng 9 2019

a/ \(x=99\Rightarrow100=x+1\)

\(A=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-9\)

\(=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-9\)

\(=x-9=99-9=90\)

b/ Tương tự \(20=x-1\)

\(B=x^6-\left(x-1\right)x^5-\left(x-1\right)x^4-\left(x-1\right)x^3-\left(x-1\right)x^2-\left(x-1\right)x+3\)

\(=x^6-x^6+x^5-x^5+x^4-x^4+x^3-x^3+x^2-x^2+x+3\)

\(=x+3=24\)

c/ \(26=x+1;27=x+2;47=2x-3;77=3x+2;50=2x\)

\(C=x^7-\left(x+1\right)x^6+\left(x+2\right)x^5-\left(2x-3\right)x^4-\left(3x+2\right)x^3+2x.x^2+x-24\)

\(=x-24=1\)

18 tháng 9 2019

a/ x=99⇒100=x+1x=99⇒100=x+1

A=x5−(x+1)x4+(x+1)x3−(x+1)x2+(x+1)x−9A=x5−(x+1)x4+(x+1)x3−(x+1)x2+(x+1)x−9

=x5−x5−x4+x4+x3−x3−x2+x2+x−9=x5−x5−x4+x4+x3−x3−x2+x2+x−9

=x−9=99−9=90=x−9=99−9=90

b/ Tương tự 20=x−120=x−1

B=x6−(x−1)x5−(x−1)x4−(x−1)x3−(x−1)x2−(x−1)x+3B=x6−(x−1)x5−(x−1)x4−(x−1)x3−(x−1)x2−(x−1)x+3

=x6−x6+x5−x5+x4−x4+x3−x3+x2−x2+x+3=x6−x6+x5−x5+x4−x4+x3−x3+x2−x2+x+3

=x+3=24=x+3=24

c/ 26=x+1;27=x+2;47=2x−3;77=3x+2;50=2x26=x+1;27=x+2;47=2x−3;77=3x+2;50=2x

C=x7−(x+1)x6+(x+2)x5−(2x−3)x4−(3x+2)x3+2x.x2+x−24C=x7−(x+1)x6+(x+2)x5−(2x−3)x4−(3x+2)x3+2x.x2+x−24

=x−24=1=x−24=1

4 tháng 8 2018

x7-26x6+27x5-47x4-77x3+50x2+x-24

=x7-25x6-x6+25x5+2x5-50x4+3x4-75x3-2x3+50x2+x-24

= x6(x+(-25))-x5(x-25)+2x4(x-25)+3x3(x-25)

-2x2​(x-25)+x-24

Thay x=25 vào biểu thức :

=>25 -24=1

Vậy C=1