Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(A=\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{120}+\sqrt{121}}\)
\(=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{121}-\sqrt{120}\)
\(=\sqrt{121}-1=11-1=10\)
Lại có đánh giá: \(\frac{1}{\sqrt{k}}=\frac{2}{2\sqrt{k}}>\frac{2}{\sqrt{k+1}+\sqrt{k}}\left(k>1\right)\)
\(\frac{1}{\sqrt{k}}>\frac{2\left(\sqrt{k+1}-\sqrt{k}\right)}{k+1-k}=2\left(\sqrt{k+1}-\sqrt{k}\right)\)
SUy ra \(B>1+2\left(\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{36}-\sqrt{35}\right)\)
\(=1+2\left(\sqrt{36}-\sqrt{2}\right)>1+2\left(6-1\right)=10=A\)
Nên B>A
a/ \(\sqrt{x}+\sqrt{x+7}+2\sqrt{x^2+7x}=35-2x\)
\(\Leftrightarrow\sqrt{x}+\sqrt{x+7}+2\sqrt{x\left(x+7\right)}=35-2x\)
Đặt \(a=\sqrt{x}\); \(b=\sqrt{x+7}\) \(\left(a,b\ge0\right)\), ta được:
\(a+b+2ab+2a^2=35\) \(\Leftrightarrow a+2a^2+b+2ab=35\)
\(\Leftrightarrow a\left(1+2a\right)+b\left(1+2a\right)=35\)\(\Leftrightarrow\left(1+2a\right)\left(a+b\right)=35\)
Đến đây bạn chia trường hợp để giải nha
b/ \(P=\frac{1+2x}{1-\sqrt{1+2x}}-\frac{1-2x}{1-\sqrt{1-2x}}\)\(=\frac{\left(1+2x\right)\left(1+\sqrt{1+2x}\right)}{-2x}-\frac{\left(1-2x\right)\left(1+\sqrt{1-2x}\right)}{2x}\)
Tới đây bạn tự làm được k
Câu a ra đến (1+2a)(a+b)=35 rồi giải thế nào vậy bạn. Mình cảm ơn
2: =>2x^2-8x+4=x^2-4x+4 và x>=2
=>x^2-4x=0 và x>=2
=>x=4
3: \(\sqrt{x^2+x-12}=8-x\)
=>x<=8 và x^2+x-12=x^2-16x+64
=>x<=8 và x-12=-16x+64
=>17x=76 và x<=8
=>x=76/17
4: \(\sqrt{x^2-3x-2}=\sqrt{x-3}\)
=>x^2-3x-2=x-3 và x>=3
=>x^2-4x+1=0 và x>=3
=>\(x=2+\sqrt{3}\)
6:
=>\(\sqrt{\left(\sqrt{x-1}+1\right)^2}-\sqrt{\left(\sqrt{x-1}-1\right)^2}=-2\)
=>\(\sqrt{x-1}+1-\left|\sqrt{x-1}-1\right|=-2\)
=>\(\left|\sqrt{x-1}-1\right|=\sqrt{x-1}+1+2=\sqrt{x-1}+3\)
=>1-căn x-1=căn x-1+3 hoặc căn x-1-1=căn x-1+3(loại)
=>-2*căn x-1=2
=>căn x-1=-1(loại)
=>PTVN
1) ĐK: \(x\ge\dfrac{5}{2}\)
pt <=> \(x-4=\sqrt{2x-5}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\\left(x-4\right)^2=2x-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\x^2-8x+16=2x-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\x^2-10x+21=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\\left(x-3\right)\left(x-7\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\\left[{}\begin{matrix}x=3\left(l\right)\\x=7\left(n\right)\end{matrix}\right.\end{matrix}\right.\)
Vậy, pt có nghiệm duy nhất là x=7
2) ĐK: \(2x^2-8x+4\ge0\)
pt <=> \(\left\{{}\begin{matrix}x\ge2\\2x^2-8x+4=x^2-4x+4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x^2-4x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\left(x-4\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\\left[{}\begin{matrix}x=0\left(l\right)\\x=4\left(n\right)\end{matrix}\right.\end{matrix}\right.\)
Vậy, pt có nghiệm duy nhất là x=4
3) ĐK: \(x\ge3\)
pt <=> \(\left\{{}\begin{matrix}x\le8\\x^2+x-12=x^2-16x+64\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le8\\17x=76\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le8\\x=\dfrac{76}{17}\left(n\right)\end{matrix}\right.\)
Vậy, pt có nghiệm duy nhất là \(x=\dfrac{76}{17}\)\(\)
1: Ta có: \(\sqrt{7-3\sqrt{5}}+\sqrt{7+3\sqrt{5}}\)
\(=\frac{\sqrt{14-6\sqrt{5}}+\sqrt{14+6\sqrt{5}}}{\sqrt{2}}\)
\(=\frac{\sqrt{9-2\cdot3\cdot\sqrt{5}+5}+\sqrt{9+2\cdot3\cdot\sqrt{5}+5}}{\sqrt{2}}\)
\(=\frac{\sqrt{\left(3-\sqrt{5}\right)^2}+\sqrt{\left(3+\sqrt{5}\right)^2}}{\sqrt{2}}\)
\(=\frac{\left|3-\sqrt{5}\right|+\left|3+\sqrt{5}\right|}{\sqrt{2}}\)
\(=\frac{3-\sqrt{5}+3+\sqrt{5}}{\sqrt{2}}\)(Vì \(3>\sqrt{5}>0\))
\(=\frac{6}{\sqrt{2}}=\sqrt{18}=3\sqrt{2}\)
2) Ta có: \(\sqrt{6-\sqrt{35}}+\sqrt{6+\sqrt{35}}\)
\(=\frac{\sqrt{12-2\sqrt{35}}+\sqrt{12+2\sqrt{35}}}{\sqrt{2}}\)
\(=\frac{\sqrt{7-2\cdot\sqrt{7}\cdot\sqrt{5}+5}+\sqrt{7+2\cdot\sqrt{7}\cdot\sqrt{5}+5}}{\sqrt{2}}\)
\(=\frac{\sqrt{\left(\sqrt{7}-\sqrt{5}\right)^2}+\sqrt{\left(\sqrt{7}+\sqrt{5}\right)^2}}{\sqrt{2}}\)
\(=\frac{\left|\sqrt{7}-\sqrt{5}\right|+\left|\sqrt{7}+\sqrt{5}\right|}{\sqrt{2}}\)
\(=\frac{\sqrt{7}-\sqrt{5}+\sqrt{7}+\sqrt{5}}{\sqrt{2}}\)(Vì \(\sqrt{7}>\sqrt{5}>0\))
\(=\frac{2\sqrt{7}}{\sqrt{2}}=\sqrt{14}\)