K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2021

\(a.\)

\(TC:AB^2=BC^2+AC^2=7^2+24^2=625\)

\(\Rightarrow\) \(\Delta ABC\perp C\)

\(b.\)

\(TC:FD^2=DE^2+EF^2=2^2+\left(\sqrt{11}\right)^2=15\)

\(\Rightarrow\Delta DEF\perp E\)

\(c.\)

\(TC:IG^{^2}=7^2=49\)

\(GH^2+HI^2=5^2+6^2=61\)

\(IG^2\ne GH^2+HI^2\)

\(\Rightarrow\Delta IGHthường\)

Chúc em học tốt !!!

a,

Xét △ABC có:

BC2 = 172 = 289

AB2 + AC2 = 152 + 82 = 225 + 64 = 289

=> BC2 = AB2 + AC2

=> △ABC vuông 

5 tháng 1 2022

bt chớt lìn

6 tháng 1 2022

Mình làm câu 1 trước, vừa làm vừa nêu hướng dẫn giải vì các câu sau làm tương tự.

Bước 1: Xét tam giác, lấy bình phương của cạnh lớn nhất.

Xét \(\Delta ABC\)có \(AC^2=\left(\sqrt{5}\right)^2=5\)

Kế tiếp ta xét tổng các bình phương của hai cạnh còn lại:

Lại có \(AB^2+BC^2=1^2+2^2=1+4=5\)

Cuối cùng, xét xem kết quả của 2 phép tính trên có bằng nhau hay không. Theo định lý Pytago đảo, nếu binh phương cạnh lớn nhất mà bằng tổng các bình phương 2 cạnh còn lại thì tam giác đó vuông. (tại đỉnh đối diện với cạnh lớn nhất), nếu không bằng thì không phải tam giác vuông.

\(\Rightarrow AC^2=AB^2+BC^2\left(=5\right)\)

\(\Rightarrow\Delta ABC\)vuông tại B

8 tháng 2 2021

Xét tam giác ABC cân tại A: M là trung điểm của BC(gt)

                                        => AM là trung tuyến

Xét tam giác ABC cân tại A: AM là trung tuyến (cmt)

                                      =>   AM là đường cao (TC các đường trong tam giác cân)

Xét tam giác EBC: EM là trung tuyến (AM là trung tuyến, E thuộc AM)

                              EM là đường cao (AM là đường cao, E thuộc AM)

=> Tam giác EBC cân tại E

M là trung điểm của BC (gt) => BM = \(\dfrac{BC}{2}=\dfrac{12}{2}=6\left(cm\right)\)

Xét tam giác AMB vuông tại M (AM \(\perp BM\))

               AB= AM2 + BM2 (định lý Py ta go)

Thay số:  AB= 82 + 62

        <=> AB=  100

        <=> AB = 10 (cm)

Vậy AB = 10 (cm)

8 tháng 2 2021

Bài 1:

Xét ∆ABC vuông tại A, AH \(\perp\) BC:

Ta có: AH2 = BH . HC (hệ thức lượng)

<=>    122  = 9 . HC

<=>    HC   = \(\dfrac{12^2}{9^{ }}=\dfrac{144}{9}=16\left(cm\right)\)

Vậy HC = 16 (cm)

Ta có: BC = BH + HC = 9 + 16 = 25 (cm)

Xét ∆ABC vuông tại A, AH \(\perp\) BC:

Ta có: AB2 = BH . BC (hệ thức lượng)

<=>    AB2 = 9 . 25

<=>    AB2 = 225

<=>    AB   = 15 (cm)

Vậy AB = 15 (cm)