√3612136121 b, 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1. Áp dụng quy tắc khai phương một thương, hãy tính: a, \(\sqrt{\dfrac{36}{121}}\) b, \(\sqrt{\dfrac{9}{16}:\dfrac{25}{36}}\) c, \(\sqrt{0,0169}\) d,\(\dfrac{\sqrt{15}}{\sqrt{735}}\) e, \(\sqrt{\dfrac{81}{8}:\sqrt{3\dfrac{1}{8}}}\) g, \(\dfrac{\sqrt{12,5}}{\sqrt{0,5}}\) 2. Tính: a,\(\sqrt{\dfrac{25}{144}}\) b,\(\sqrt{2\dfrac{7}{81}}\) ...
Đọc tiếp

1. Áp dụng quy tắc khai phương một thương, hãy tính:

a, \(\sqrt{\dfrac{36}{121}}\) b, \(\sqrt{\dfrac{9}{16}:\dfrac{25}{36}}\) c, \(\sqrt{0,0169}\)

d,\(\dfrac{\sqrt{15}}{\sqrt{735}}\) e, \(\sqrt{\dfrac{81}{8}:\sqrt{3\dfrac{1}{8}}}\) g, \(\dfrac{\sqrt{12,5}}{\sqrt{0,5}}\)

2. Tính:

a,\(\sqrt{\dfrac{25}{144}}\) b,\(\sqrt{2\dfrac{7}{81}}\) c,\(\sqrt{\dfrac{2,25}{16}}\) d, \(\sqrt{\dfrac{1,21}{0,49}}\)

3. Áp dụng quy tắc chia hai căn bậc hai, hãy tính:

a, \(\sqrt{18}:\sqrt{2}\) b, \(\sqrt{45}:\sqrt{80}\)

c, (\(\sqrt{20}-\sqrt{45}+\sqrt{5}\) ) : \(\sqrt{5}\) d, \(\dfrac{\sqrt{8^2}}{\sqrt{4^5.2^3}}\)

4. Khẳng định nào sau đây là đúng?

A. \(\sqrt{\dfrac{3}{\left(-5\right)^2}}=-\dfrac{\sqrt{3}}{5}\) B. \(\left(\sqrt{\dfrac{-3}{-5}}\right)^2=\dfrac{3}{5}\)

5. Tính.

a, \(\sqrt{2\dfrac{7}{81}}:\dfrac{\sqrt{6}}{\sqrt{150}}\) b, \(\left(\sqrt{12}+\sqrt{27}-\sqrt{3}\right):\sqrt{3}\)

c, \(\left(\sqrt{\dfrac{1}{5}-\sqrt{\dfrac{9}{5}}+\sqrt{5}}\right):\sqrt{5}\) d, \(\sqrt{\dfrac{2+\sqrt{3}}{\sqrt{2}}}\)

6. So sánh

a, So sánh \(\sqrt{144-49}\)\(\sqrt{144}-\sqrt{49}\);

b, Chứng minh rằng , với hai số a,b thỏa mãn a> b> 0 thì \(\sqrt{a}-\sqrt{b}< \sqrt{a-b}\)

3
13 tháng 11 2018

1

a,\(\sqrt{\dfrac{36}{121}}=\sqrt{\dfrac{6^2}{11^2}}=\dfrac{6}{11}\)

\(\sqrt{\dfrac{9}{16}:\dfrac{25}{36}}=\sqrt{\dfrac{81}{100}}=\sqrt{\dfrac{9^2}{10^2}}=\dfrac{9}{10}\)

13 tháng 11 2018

tương tự lm nốthehe

28 tháng 5 2017

a) \(\sqrt{10}.\sqrt{40}\)

=\(\sqrt{10.40}\)

=\(\sqrt{400}\)

=20

b) \(\sqrt{5.}\sqrt{45}\)

=\(\sqrt{5.45}\)

=\(\sqrt{225}\)

=\(\sqrt{15}\)

c) \(\sqrt{52.}\sqrt{13}\)

=\(\sqrt{52.13}\)

=\(\sqrt{676}\)

=26

d)\(\sqrt{2.}\sqrt{162}\)

=\(\sqrt{2.162}\)

=\(\sqrt{324}\)

=18

29 tháng 5 2017

b)

=15

12 tháng 8 2016

a) \(\sqrt{0,4}.\sqrt{6,4}=\sqrt{0,4.6,4}=\sqrt{\frac{4}{10}.\frac{64}{10}}=\sqrt{\frac{\left(2.8\right)^2}{10^2}}=\frac{16}{10}=\frac{8}{5}\)

b) \(\sqrt{2,7}.\sqrt{5}.\sqrt{1,5}=\sqrt{\frac{27}{10}.5.\frac{15}{10}}=\sqrt{\frac{3^3.5^2.3}{10^2}}=\sqrt{\frac{\left(3^2.5\right)^2}{10^2}}=\frac{45}{10}=\frac{9}{2}\)

12 tháng 8 2016

câu này dễ mà

chỉ cần nhân vào là xong

kiến thức đầu lớp 9 khá dễ đấy

tự mình làm đi nha bạn

14 tháng 8 2016

a)\(\sqrt{10}\cdot\sqrt{40}=\sqrt{10\cdot40}=\sqrt{400}=20\)

b) \(\sqrt{2}\cdot\sqrt{162}=\sqrt{2\cdot162}=\sqrt{2\cdot2\cdot81}=\sqrt{4}\cdot\sqrt{81}=2\cdot9=18\)

Bài 1: Áp dụng quy tắc khai phương một tích, hãy tính: a, \(\sqrt{3.75}\) ; b, \(\sqrt{0,4.6,4}\) ; c, \(\sqrt{12,1.360}\) d, \(\sqrt{49.1,44.25}\) ; e, \(1,3.52.10\) ; g, \(\sqrt{2,7.5.1,5}\) BÀi 2: Thực hiện các phép tính sau: a, \(\sqrt{\dfrac{1}{9}.0,64.64}\) ; b, \(\sqrt{11\dfrac{1}{9}}\) ; c, \(\sqrt{\dfrac{1}{144}}.2\dfrac{2}{49}\) ...
Đọc tiếp

Bài 1: Áp dụng quy tắc khai phương một tích, hãy tính:

a, \(\sqrt{3.75}\) ; b, \(\sqrt{0,4.6,4}\) ; c, \(\sqrt{12,1.360}\)

d, \(\sqrt{49.1,44.25}\) ; e, \(1,3.52.10\) ; g, \(\sqrt{2,7.5.1,5}\)

BÀi 2: Thực hiện các phép tính sau:

a, \(\sqrt{\dfrac{1}{9}.0,64.64}\) ; b, \(\sqrt{11\dfrac{1}{9}}\) ; c, \(\sqrt{\dfrac{1}{144}}.2\dfrac{2}{49}\) ; d, \(\sqrt{1\dfrac{9}{16}}.2\dfrac{1}{4}.2\dfrac{7}{9}\)

BÀi 3: Áp dụng quy tắc nhân hai căn bậc hai, hãy tính:

a,\(\sqrt{0.4}.\sqrt{64}\) ; b, \(\sqrt{5,2}.\sqrt{1,3}\) ; c, \(\sqrt{12,1}.\sqrt{360}\)

Bài 4: Khẳng định nào sau đây là đúng?

A, số nghịch đảo của \(\sqrt{3}\)\(\dfrac{1}{3}\) .

B, Số nghịch đảo của 2 là \(\dfrac{1}{\sqrt{2}}\)

C, (\(\sqrt{2}+\sqrt{3}\) ) và ( \(\sqrt{2}-\sqrt{3}\) ) không là hai số nghịch đảo của nhau

D, (\(\sqrt{5}-\sqrt{7}\) ) và (\(\sqrt{5}+\sqrt{7}\) ) là hai số nghịch đảo của nhau

bài 5: tính

a, \(\sqrt{a^{ }}\)\(^2\) với a = 6,5; -0,1 ; b, \(\sqrt{a}\) \(^4\) với a = 3; -0,1 ; c, \(\sqrt{a}\) \(^6\) với a= -2;0,1

giúp em với e cần gấp lắm

1

Bài 1: 

a: \(=\sqrt{225}=15\)

b: \(=\sqrt{\dfrac{2}{5}\cdot\dfrac{32}{5}}=\sqrt{\dfrac{64}{25}}=\dfrac{8}{5}\)

c: \(=\sqrt{121\cdot36}=11\cdot6=66\)

d: \(=7\cdot1.2\cdot5=35\cdot1.2=42\)

g: \(=\sqrt{\dfrac{27}{10}\cdot\dfrac{3}{2}\cdot5}=\sqrt{\dfrac{81}{20}\cdot5}=\sqrt{\dfrac{81}{4}}=\dfrac{9}{2}\)

Bài 2: 

a: \(=\dfrac{1}{3}\cdot0.8\cdot8=\dfrac{8}{3}\cdot\dfrac{4}{5}=\dfrac{32}{15}\)

b: \(=\sqrt{\dfrac{100}{9}}=\dfrac{10}{3}\)

c: \(=\sqrt{\dfrac{1}{144}\cdot\dfrac{100}{49}}=\dfrac{1}{12}\cdot\dfrac{10}{7}=\dfrac{5}{6\cdot7}=\dfrac{5}{42}\)

23 tháng 4 2017

Áp dụng quy tắc khai phương một thương, hãy tính :

a) 9169 = \(\sqrt{\dfrac{3^2}{13^2}}\) = \(\left|\dfrac{3}{13}\right|\) = \(\dfrac{3}{13}\)

b) 25144 = \(\sqrt{\dfrac{5^2}{12^2}}\) = \(\left|\dfrac{5}{12}\right|\) = \(\dfrac{5}{12}\)

c) 1916 = \(\sqrt{\dfrac{25}{16}}\) = \(\sqrt{\dfrac{5^2}{4^2}}\) = \(\left|\dfrac{5}{4}\right|\) = \(\dfrac{5}{4}\)

d) 2781 = \(\sqrt{\dfrac{169}{81}}\) = \(\sqrt{\dfrac{13^2}{9^2}}\) = \(\left|\dfrac{13}{9}\right|\) = \(\dfrac{13}{9}\)

23 tháng 4 2017

Áp dụng quy tắc chia hai căn bậc hai, hãy tính :

a) 230023 = \(\sqrt{\dfrac{2300}{23}}\) = \(\sqrt{100}\) = 10

b) 12,50,5 = \(\sqrt{\dfrac{12,5}{0,5}}\) = \(\sqrt{25}\) = 5

c) 19212 = \(\sqrt{\dfrac{192}{12}}\) = \(\sqrt{16}\) = 4

d) 6150 = \(\sqrt{\dfrac{6}{150}}\) = \(\sqrt{\dfrac{1}{25}}\) = \(\dfrac{1}{5}\)

31 tháng 3 2017

Ta thấy các số trong căn bậc hai đều lớn hơn 0, áp dụng \(\sqrt{a\cdot b}=\sqrt{a}\cdot\sqrt{b}\)

a) \(\sqrt{7}\cdot\sqrt{63}=\sqrt{7\cdot63}=21\)

b) \(\sqrt{2,5}\cdot\sqrt{30}\cdot\sqrt{48}=\sqrt{2,5\cdot30\cdot48}=60\)

c) \(\sqrt{0,4}\cdot\sqrt{6,4}=\sqrt{0,4\cdot6,4}=1,6\)

d) \(\sqrt{2,7}\cdot\sqrt{5}\cdot\sqrt{1,5}=\sqrt{2,7\cdot5\cdot1,5}=4,5\)

20 tháng 6 2017

a. \(\sqrt{7}.\sqrt{63}=\sqrt{7.63}=\sqrt{441}=21\)

b.\(\sqrt{2,5}.\sqrt{30}.\sqrt{48}=\sqrt{2,5.30.48}=\sqrt{3600}=60\)

c.\(\sqrt{0,4}.\sqrt{6,4}=\sqrt{0,4.6,4}=\sqrt{2,56}=1,6\)

d.\(\sqrt{2,7}.\sqrt{5}.\sqrt{1,5}=\sqrt{2,7.5.1,5}=\sqrt{20,25}=4,5\)

27 tháng 9 2018

a) ...= \(\dfrac{1}{4}\).\(6\sqrt{5}\) +\(2\sqrt{5}\) - \(3\sqrt{5}\) +5

= \(\dfrac{3}{2}\sqrt{5}\) -\(\sqrt{5}\) +5

=5 - \(\dfrac{1}{2}\sqrt{5}\)

d) ...= \(\sqrt{\dfrac{a}{\left(1+b\right)^2}}\) . \(\sqrt{\dfrac{4a\left(1+b\right)^2}{15^2}}\)

= \(\sqrt{\dfrac{4a^2\left(1+b\right)^2}{\left(1+b\right)^2.15^2}}\) = \(\sqrt{\dfrac{4a^2}{15^2}}\)= \(\dfrac{2a}{15}\)

1 tháng 10 2018

chỉ câu b,c luôn đi nha nha ❤