Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3.
\(5a^2+2ab+2b^2=\left(a^2-2ab+b^2\right)+\left(4a^2+4ab+b^2\right)\)
\(=\left(a-b\right)^2+\left(2a+b\right)^2\ge\left(2a+b\right)^2\)
\(\Rightarrow\sqrt{5a^2+2ab+2b^2}\ge2a+b\)
\(\Rightarrow\frac{1}{\sqrt{5a^2+2ab+2b^2}}\le\frac{1}{2a+b}\)
Tương tự \(\frac{1}{\sqrt{5b^2+2bc+2c^2}}\le\frac{1}{2b+c};\frac{1}{\sqrt{5c^2+2ca+2a^2}}\le\frac{1}{2c+a}\)
\(\Rightarrow P\le\frac{1}{2a+b}+\frac{1}{2b+c}+\frac{1}{2c+a}\)
\(\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\right)\)
\(=\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\frac{1}{3}.\sqrt{3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)}=\frac{\sqrt{3}}{3}\)
\(\Rightarrow MaxP=\frac{\sqrt{3}}{3}\Leftrightarrow a=b=c=\sqrt{3}\)
Gái xinh review app chất cho cả nhà đây: https://www.facebook.com/watch/?v=485078328966618 Link tải app: https://www.facebook.com/watch/?v=485078328966618
cho a b c 0 và a+b+c=3 CMR a/1+b^2 +b/1+c^2 +c/1+a^2 >=3/2
giúp minh với!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Thiếu \(a,b\ge0\) nhé
\(1)\) Cauchy-Schwarz dạng Engel :
\(\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge\frac{9\left(a+b+c\right)}{2\left(a+b+c\right)}=\frac{9}{2}\) ( đpcm )
\(2)\)
\(\frac{\left(a+b\right)\left(a^2+b^2\right)}{4}=\frac{a^3+b^3+ab^2+a^2b}{4}=\frac{a^3+b^3+ab\left(a+b\right)}{4}\)
Cần CM : \(a^3+b^3\ge ab\left(a+b\right)\)
\(\Leftrightarrow\)\(\left(a+b\right)\left(a^2-ab+b^2\right)-ab\left(a+b\right)\ge0\)
\(\Leftrightarrow\)\(\left(a+b\right)\left(a^2-ab+b^2-ab\right)=\left(a+b\right)\left(a-b\right)^2\ge0\) ( đúng )
\(\frac{a^3+b^3+ab\left(a+b\right)}{4}=\frac{2\left(a^3+b^3\right)}{4}=\frac{a^3+b^3}{2}\) ( đpcm )
3,4 làm sau