Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,
a) Ta có \(a^2-ab+b^2=\left(a-\frac{b}{2}\right)^2+\frac{3b^2}{4}\ge0\)
Dấu "=" xảy ra khi a=b=0, trái với a3+b3>0
=> a2-ab+b2>0, mà
a3+b3=(a+b)(a2-ab+b2)>0
=> a+b>0
Lại có a,b thuộc Z nên a2-ab+b2 >= 1 nên a3+b3 >=a+b
Dấu "=" xảy ra khi (a;b) \(\in\){(1;1);(1;0);(0;1)}
b) Ta xét 2 TH
-Nếu ab =< 0, ta có:
a3+b3=(a+b)(a2-ab+b2) >= (a+b)(a2+b2)>= a2+b2, do a+b >=1
-Nếu ab>0 kết hợp với a+b>0 => a>0; b>0 dẫn tới a+b >=2
=> a3+b3=(a+b)(a2-ab+b2) >=2(a2-ab+b2)
=a2+b2+(a-b)2 >= a2+b2
Dẫn tới a3+b3 >= a2+b2
Dấu "=" xảy ra khi (a;b) \(\in\){(1;1);(1;0);(0;1)}
Bài 1:
\(\frac{2}{x^2+2y^2+3}=\frac{2}{\left(x^2+y^2\right)+\left(y^2+1\right)+2}\le\frac{2}{2xy+2y+2}=\frac{1}{xy+y+1}\)
Bài 2:
\(A=\frac{4}{4x^2+9y^2}+\frac{4}{12xy}+\frac{52}{2x.3y}\ge\frac{16}{4x^2+9y^2+12xy}+\frac{52.4}{\left(2x+3y\right)^2}\)
\(A\ge\frac{16}{\left(2x+3y\right)^2}+\frac{208}{\left(2x+3y\right)^2}=\frac{224}{\left(2x+3y\right)^2}\ge\frac{224}{4}=56\)
\(A_{min}=56\) khi \(\left\{{}\begin{matrix}x=\frac{1}{2}\\y=\frac{1}{3}\end{matrix}\right.\)
Bài 2:
a: 2x+y=1 và x-y=2
=>3x=3 và x-y=2
=>x=1 và y=-1
b: x+2y=2 và x+2y=5
=>0x=-3 và x+2y=2
=>\(\left(x,y\right)\in\varnothing\)
c: 2x+y=3 và -2x-y=-3
=>0x=0 và 2x+y=3
=>\(\left\{{}\begin{matrix}x\in R\\y=3-2x\end{matrix}\right.\)
ở cuối câu 1 thiếu ^2 nha. 2y thành 2y^2