K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 10 2019

\(A=1+5+5^2+...+5^{100}\)

\(5A=5+5^2+...+5^{100}+5^{101}\)

\(5A-A=-1+5^{101}\)

\(4A=5^{101}-1\Rightarrow A=\frac{5^{101}-1}{4}\)

\(4A+1=5^n\Leftrightarrow4\left(\frac{5^{101}-1}{4}\right)+1=5^n\)

\(\Leftrightarrow5^{101}=5^n\Rightarrow n=101\)

\(A=\frac{5^{101}-1}{4}=\frac{5^{101}}{4}-\frac{1}{4}=\frac{B}{4}-\frac{1}{4}< \frac{B}{4}\)

\(C=1.2.3+2.3.4+...+2013.2014.2015\)

\(4C=1.2.3.4+2.3.4.4+...+2013.2014.2015.4\)

\(4C=1.2.3\left(4-0\right)+2.3.4.\left(5-1\right)+...+2013.2014.2015\left(2016-2012\right)\)

\(4C=1.2.3.4+2.3.4.5-1.2.3.4+...+2013.2014.2015.2016-2012.2013.2014.2015\)

\(4C=2013.2014.2015.2016\)

\(C=\frac{2013.2014.2015.2016}{4}=...\)

18 tháng 10 2019

Giúp em nhanh với ạ

1. 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101 
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 ) 
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101 
2. 2A = 8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21 
=> 2A - A = (8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21) - (4+ 2^2 + 2 ^ 3 + 2^4 + ... + 2^20 ) 
=> A = 2^21 là một lũy thừa của 2 
3. 
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101 
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100) 
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2 
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101 
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 ) 
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2 
c) xem lại đề ý c xem quy luật như thế nào nhé. 
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151 
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150) 
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2

14 tháng 7 2017
tự hỏi và tự trả lời :)
1​/a. cho 2 số :A = 10 mũ​ 2004 + 1 phần​ 10 mũ​ 2005 +1.       B= 10 mũ​ 2005 + 1 phần​ 10 mũ​ 2006 + 1.              So sánh​ A và Bb. chứng​ minh A= 1+ 1 phần​ 2 mũ​ 2 +1 phần​ 3 mũ​ 2 + 1 phần​ 4 mũ​ 2 +...........+ 1 phần​ 100 mũ 2 < 2c. tìm​ số​ nguyên​ x đ​ể​ phân​ số​ 3x+7 phần​ x-1 là​ số​ nguyênd. tìm​ số​ nguyê​n đ​ể​ phân​ số​ n-2 phần​ n+5 có​ giá​...
Đọc tiếp

1​/a. cho 2 số :A = 10 mũ​ 2004 + 1 phần​ 10 mũ​ 2005 +1.       B= 10 mũ​ 2005 + 1 phần​ 10 mũ​ 2006 + 1.              So sánh​ A và B

b. chứng​ minh A= 1+ 1 phần​ 2 mũ​ 2 +1 phần​ 3 mũ​ 2 + 1 phần​ 4 mũ​ 2 +...........+ 1 phần​ 100 mũ 2 < 2

c. tìm​ số​ nguyên​ x đ​ể​ phân​ số​ 3x+7 phần​ x-1 là​ số​ nguyên

d. tìm​ số​ nguyê​n đ​ể​ phân​ số​ n-2 phần​ n+5 có​ giá​ trị​ nguyên

Bài 2:

a. tính​ tổng​ 20 số​ hạng​ đ​ầu​ tiên​ của​ dãy​ sau : 1 phần​ 1.2 , 1 phần​ 2.3 , 1 phần 3.4 , ...

b. tính​ tổng​ 5 số​ hạng đ​ầu​ tiên​ của​ dãy​ số​ sau : 5 phần​ 6 , 5 phần​ 66 , 5 phần​ 176 , 5 phần 336 ,.......

c. cho biểu​ thức​ : A = 5 mũ​ 2 phần​ 1.6 + 5 mũ​ 2 phần​ 6.11 +...+ 5 mũ​ 2 phần​ 26.31.       Chứng​ tỏ A > 1

2
4 tháng 5 2018
1/a, -Ta có: $B<1\Leftrightarrow B<\frac{10^{2005}+1+9}{10^{2006}+1+9}=\frac{10^{2005}+10}{10^{2006}+10}=\frac{10(10^{2004}+1)}{10(10^{2005}+1)}=\frac{10^{2004}+1}{10^{2005}+1}=A$ -Vậy: B
4 tháng 5 2018

1/a,

-Ta có: 

$B<1\Leftrightarrow B<\frac{10^{2005}+1+9}{10^{2006}+1+9}=\frac{10^{2005}+10}{10^{2006}+10}=\frac{10(10^{2004}+1)}{10(10^{2005}+1)}=\frac{10^{2004}+1}{10^{2005}+1}=A$

-Vậy: B<A

b,$A=1+(\frac{1}{2})^2+...+(\frac{1}{100})^2$

$\Leftrightarrow A=1+\frac{1}{2^2}+...+\frac{1}{100^2}$

$\Leftrightarrow A<1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}$

$\Leftrightarrow A<1+\frac{1}{1}-\frac{1}{2}+...+\frac{1}{99}-\frac{1}{100}$

$\Leftrightarrow A<1+1-\frac{1}{100}\Leftrightarrow A<2-\frac{1}{100}\Leftrightarrow A<2(đpcm)$
2,
a.
-Ta có:$\Rightarrow \frac{3x+7}{x-1}=\frac{3(x-1)+16}{x-1}=\frac{3(x-1)}{x-1}+\frac{16}{x-1}=3+\frac{16}{x-1}
-Để: 3x+7/x-1 nguyên
-Thì: $\frac{16}{x-1}$ nguyên
$\Rightarrow 16\vdots x-1\Leftrightarrow x-1\in Ư(16)\Leftrightarrow ....$
b, -Ta có:
$\frac{n-2}{n+5}=\frac{n+5-7}{n+5}=1-\frac{7}{n+5}$
-Để: n-2/n+5 nguyên
-Thì: \frac{7}{n+5} nguyên
$\Leftrightarrow 7\vdots n+5\Leftrightarrow n+5\in Ư(7)\Leftrightarrow ...$

1. 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 )
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101
2. 2A = 8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21
=> 2A - A = (8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21) - (4+ 2^2 + 2 ^ 3 + 2^4 + ... + 2^20 )
=> A = 2^21 là một lũy thừa của 2
3.
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100)
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 )
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2
c) Bạn hãy xem lại đề ý c xem quy luật như thế nào nhé.
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150)
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2

Viết thế này cho dễ hiểu nhé :

Câu 1 : 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101

=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 )
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101
Câu 2 :

 2A = 8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21
=> 2A - A = (8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21) - (4+ 2^2 + 2 ^ 3 + 2^4 + ... + 2^20 )
=> A = 2^21 là một lũy thừa của 2
Câu 3:


a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100)
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2


b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 )
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2
c) Bạn hãy xem lại đề ý c xem quy luật như thế nào nhé. 


d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150)
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2

8 tháng 12 2020

Bài 1:

a,\(A=3+3^2+3^3+...+3^{2010}\)

\(=\left(3+3^2+3^3+3^4\right)+....+\left(3^{2007}+3^{2008}+3^{2009}+3^{2010}\right)\)

\(=3\left(1+3+3^2+3^3\right)+....+3^{2007}\left(1+3+3^2+3^3\right)\)

\(=3.40+...+3^{2007}.40\)

\(=40\left(3+3^5+...+3^{2007}\right)⋮40\)

Vì A chia hết cho 40 nên chữ số tận cùng của A là 0

b,\(A=3+3^2+3^3+...+3^{2010}\)

\(3A=3^2+3^3+...+3^{2011}\)

\(3A-A=\left(3^2+3^3+...+3^{2011}\right)-\left(3+3^2+3^3+...+3^{2010}\right)\)

\(2A=3^{2011}-3\)

\(2A+3=3^{2011}\)

Vậy 2A+3 là 1 lũy thừa của 3

1

Gọi d = ƯCLN(2n + 5; 3n + 7) (với d ∈N*)

\(\Rightarrow\hept{\begin{cases}2n+5⋮d\\3n+7⋮d\end{cases}}\)                       \(\Rightarrow\hept{\begin{cases}3\left(2n+5\right)⋮d\\2\left(3n+7\right)⋮d\end{cases}}\)       \(\Rightarrow\hept{\begin{cases}6n+15⋮d\\6n+14⋮d\end{cases}}\)

\(\text{⇒ (6n + 15) – (6n + 14) ⋮ d}\)

\(\text{⇒1 ⋮d}\)

\(\text{⇒d = 1}\)

Do đó: \(\text{ƯCLN(2n + 5; 3n + 7) = 1}\)

Vậy hai số \(\text{2n + 5 và 3n +7 }\)là hai số nguyên tố cùng nhau.

\(M=1+3+3^2+...+3^{100}\)

\(\Leftrightarrow M=1+3+\left(3^2+3^3+3^4\right)+\left(3^5+3^6+3^7\right)+...+\left(3^{98}+3^{99}+3^{100}\right)\)

\(\Leftrightarrow M=4+3^2+\left(1+3+3^2\right)+3^5+\left(1+3+3^2\right)+...+3^{98}\left(1+3+3^2\right)\)

\(\Leftrightarrow M=4+3^2.13+3^5.13+...+3^{98}.13\)

\(\Leftrightarrow M=4+13\left(3^2+3^5+...+3^{98}\right)\)

mà \(13\left(3^2+3^5+...+3^{98}\right)⋮13\)

\(4:13\left(dư4\right)\)

\(\Leftrightarrow M:13\left(dư4\right)\)

26 tháng 5 2017

a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100)
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 )
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2
c) xem lại đề ý c xem quy luật như thế nào nhé.
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150)
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2

26 tháng 5 2017

a) Có A=\(1+3+3^2+3^3+....+3^{100}\)

\(\Rightarrow\)3A =\(3\left(1+3+3^2+3^3+...+3^{100}\right)\)=\(3+3^2+3^3+3^4+...+3^{101}\)

\(\Rightarrow2A=3+3^2+3^3+....+3^{101}-1-3-3^2-3^3-....-3^{100}=3^{101}-1\)\(\Rightarrow A=\dfrac{3^{101}-1}{2}\)

Bài b/c/d : bn cứ lm tương tự.

25 tháng 2 2020

c) Câu hỏi của Yumani Jeng - Toán lớp 6 - Học toán với OnlineMath